现在位置是:首 页 >> 
关键字:
期刊中心
急诊外科入院患者疾病谱及频率的时间序列变迁模式:一项基于23795例患者数据的真实世界临床研究
The Time-dependent evolution spectrum of acute care surgery patients: a real world study based on 23, 795 electronic admission medical records
作者:江华,孙明伟,马云鹏,彭谨,周志远,蔡斌,蒋忠宁,杨浩,Charles,Damien Lu,曾俊    发布日期:2017-12-04    

目的 急诊科面临的诸多挑战之一是在有限的人力资源和急救资源范围内以最高效率和最佳质量对病情复杂多变的患者进行及时处置。本研究尝试结合大数据和小波变换方程组,从急诊外科患者入院数据中解析出疾病谱及频率的多尺度时间序列变迁模式,从而为优化急诊急救资源配置提供一种智能化解决方案。方法 利用数据管理工具(Avaintec, Helsinki, Finland )导入四川省人民医院2007-2014年所有急诊外科入院患者数据,进行整理、清洗和辅助定义后 ,以9小时为单位对入院患者进行序列累加,形成连续波谱。采用计算数学软件平台(MatLab, Mathworks, Natick, MA, United States of America)小波变换函数进行分解,分解层数5层,对每一层波谱高度及其分布进行分段计数统计,并利用K-mean算法找出分解尺度系数间关系。最后利用aprori算法进行频繁模式挖掘(frequent patterns mining),挖出患者入院疾病谱及频率分布模式。结果 纳入23795例患者,疾病种类分布以急腹症占比最高,同时发现,急外患者入院变化是复杂的渐升波谱。小波变换函数进行分解,分解层数5层,对每一层波谱高度及其分布进行分段计数统计,并利用K-mean算法找出分解尺度系数间关系。最后利用aprori算法进行频繁模式挖掘(frequent patterns mining),挖出患者入院疾病谱及频率分布模式。以研究期间发生的512特大地震为例,在D3层出现了明显的噪声波,提示波动周期为4天,其临床解释为:4天内患者入院激增。结论:急诊外科的疾病发病受到多个时间尺度的影响,这种影响是一种典型的多尺度(multiple scales)现象。利用小波分析可以方便的根据不同的时间尺度把急诊入院的病案信息的变化趋势分解出来。这种方法有助于合理分配急诊资源。结果 纳入23795例患者,疾病种类分布以急腹症占比最高,同时发现,急外患者入院变化是复杂的渐升波谱。小波分解后,信号波A反映了特定时间尺度下整个波动数据的趋势性变化。而噪声波D则反映了波动在特定时间尺度下的细节特征。如A1主波尺度代表以16天为周期的波动。相应的D1,反应了16天周期波动下的变化剧烈程度。以D1始,D1-D5代表波谱分解的噪音部分。以研究期间发生的512特大地震为例,在D3层出现了明显的噪声波,提示波动周期为4天,其临床解释为:4天内患者入院激增。结论:急诊外科的疾病发病受到多个时间尺度的影响,这种影响是一种典型的多尺度(multiple scales)现象。利用小波分析可以方便的根据不同的时间尺度把急诊入院的病案信息的变化趋势分解出来。这种方法有助于合理分配急诊资源

江华,孙明伟,马云鹏,彭谨,周志远,蔡斌,蒋忠宁,杨浩,Charles,Damien Lu,曾俊. 急诊外科入院患者疾病谱及频率的时间序列变迁模式:一项基于23795例患者数据的真实世界临床研究[J]. 中华急诊医学杂志, ,: 1427-1431.
DOI号: