严重创伤、重症社区获得性肺炎、重症哮喘、慢性阻塞性肺病急性加重、失代偿性心力衰竭、急性中枢神经系统疾病是患者来急诊室就诊的常见原因,也是导致急性呼吸衰竭(acute respiratory failure,ARF)的主要疾病[1-2]。有创机械通气(invasive mechanical ventilation,IMV)是治疗ARF的基石[3],用于辅助或代替自主呼吸以纠正缺氧、高碳酸血症,减轻呼吸肌的工作负荷[4];急诊室中的ARF患者接受IMV后常转入急诊重症监护室(emergency intensive care unit,EICU)进一步治疗。为ARF患者实施IMV建立人工气道时通常首选经口气管插管,而对于需要长时间接受IMV的患者,气管切开也是常用的建立人工气道的手段[5]。与经口气管插管相比,气管切开导管较短且管腔大,气道阻力及通气死腔较小,可以提高机械通气效率并有利于患者气道分泌物的清除及早期脱离呼吸机[6]。目前世界范围内尚罕见针对EICU内接受IMV患者气管切开危险因素的研究,本研究希望通过寻找引起IMV患者气管切开的独立危险因素,识别需要进行早期气管切开的患者,以便于在诊疗过程中的适当时机为其实施气管切开,从而达到改善预后、降低死亡率的目的。
1 资料与方法 1.1 一般资料本研究为病例对照研究,纳入2016年8月至2019年8月在上海交通大学医学院附属第六人民医院EICU住院治疗的患者,对其临床资料进行分析。纳入标准:(1)患者在纳入期限内接受IMV;(2)患者经治疗后存活且出院。排除标准:(1)患者年龄 < 18岁;(2)严重免疫抑制状态;(3)胸廓畸形;(4)妊娠;(5)入院前已气管切开;(6)全身麻醉手术后带管回病房;(7)接受IMV时间 < 24 h;(8)临床资料不完整。本研究经上海交通大学医学院附属第六人民医院伦理委员会批准,审批编号:2021-KY-005(K),临床试验注册号:ChiCTR2100054605。
1.2 研究方法通过医院信息数据库电子病历系统提取患者临床资料,包括:(1)人口统计学数据;(2)合并的基础疾病及是否并发脓毒症;(3)插管后24 h内的急性生理学与慢性健康状况评分Ⅱ (acute physiology and chronic health evaluation Ⅱ,APACHE Ⅱ)、简化急性生理学评分Ⅲ (simplified acute physiology score Ⅲ,SAPS Ⅲ)、格拉斯哥昏迷评分(Glasgow coma scale,GCS)、序贯器官衰竭评分(sequential organ failure assessment,SOFA);(4)插管后24 h内的生命体征;(5)插管后24 h内的化验室数据。依据患者在住院期间是否接受气管切开分为气管切开组与成功拔管组。
1.3 统计学方法采用SPSS 19.0软件对数据进行统计分析。呈正态分布的计量资料采用均数±标准差(x±s)表示,两组间比较采用独立样本t检验;非正态分布的计量资料采用中位数(四分位数)[M(Q1, Q3)]表示,两组间比较采用Mann-Whitney U检验;计数资料以频数(百分率)表示,两组间比较采用χ2检验,理论频数小于5时采用校正χ2检验,当理论频数小于1时采用Fisher确切概率法。对于单因素分析中差异有统计学意义的指标采用Logistic回归分析引起IMV患者气管切开的独立危险因素。以P < 0.05为差异有统计学意义。
2 结果 2.1 全部患者的基线资料以及气管切开组与成功拔管组患者基线资料比较如图 1所示,共有109名在EICU中接受IMV并且存活的患者被纳入本研究,其中有53(48.62%)例患者接受气管切开术,56(51.38%)例患者成功拔管。
![]() |
图 1 研究对象入选流程图 Fig 1 Flow chart of research objects enrollment |
|
气管切开组患者的GCS评分[(11.58±3.69)vs.(12.96±2.54)]、多发伤发生率(37.74% vs. 58.93%)显著低于成功拔管组;气管切开组患者GCS评分≤8分的发生率(32.08% vs. 10.71%)、脓毒症发生率(54.72% vs. 35.71%)、颈脊髓损伤发生率(26.42% vs. 7.14%)、血红蛋白浓度[(109.32±27.06) g/L vs. (97.77±22.92) g/L]显著高于成功拔管组;两组间其余指标的差异无统计学意义,见表 1。
变量 | 全部患者(n=109) | 气管切开组(n=53) | 成功拔管组(n=56) | t/χ2/Z值 | P值 |
年龄(岁) a | 58.62±18.61 | 58.89±16.12 | 58.38±20.83 | -0.144 | 0.886 |
性别(男)c | 77(70.64) | 38(71.70) | 39(69.64) | 0.055 | 0.814 |
APACHE Ⅱ评分a | 14.52±5.02 | 15.11±5.72 | 13.96±4.24 | -1.186 | 0.238 |
SAPS Ⅲ评分a | 45.60±13.30 | 45.72±13.69 | 45.48±13.05 | -0.092 | 0.927 |
GCS评分a | 12.29±3.21 | 11.58±3.69 | 12.96±2.54 | 2.261 | 0.026 |
GCS评分≤8分(是)c | 23(21.10) | 17(32.08) | 6(10.71) | 7.463 | 0.006 |
并发脓毒症(是)c | 49(44.95) | 29(54.72) | 20(35.71) | 3.974 | 0.046 |
合并高血压(是)c | 37(33.94) | 16(30.19) | 21(37.50) | 0.649 | 0.420 |
合并糖尿病(是)c | 23(21.10) | 10(18.87) | 13(23.21) | 0.309 | 0.578 |
合并心力衰竭(是)c | 18(16.51) | 8(15.09) | 10(17.86) | 0.151 | 0.698 |
创伤(是)c | 65(59.63) | 29(54.72) | 36(64.29) | 1.036 | 0.309 |
脑部创伤(是)c | 27(24.77) | 13(24.53) | 14(25.00) | 0.003 | 0.955 |
颈脊髓损伤(是)c | 18(16.51) | 14(26.42) | 4(7.14) | 7.336 | 0.007 |
多发伤(是)c | 53(48.62) | 20(37.74) | 33(58.93) | 4.896 | 0.027 |
HR(次/min)a | 92.69±18.42 | 91.00±18.27 | 94.29±18.58 | 0.930 | 0.354 |
MAP(mmHg)a | 90.05±14.27 | 90.32±16.21 | 89.80±12.30 | -0.190 | 0.849 |
PaO2/FiO2 b | 200.00(170.00, 272.50) | 192.50(165.00, 272.50) | 200.00(173.13, 273.75) | -0.337 | 0.736 |
pH a | 7.42±0.10 | 7.41±0.11 | 7.42±0.08 | 0.645 | 0.520 |
Na+(mmol/L)a | 139.83±5.88 | 139.74±5.88 | 139.93±5.93 | 0.170 | 0.865 |
K+(mmol/L)a | 3.78±0.71 | 3.82±0.73 | 3.75±0.71 | -0.528 | 0.599 |
Cr(μmol/L)b | 69.00(53.00, 97.50) | 69.00(51.00, 90.50) | 69.00(53.25, 104.50) | -0.470 | 0.638 |
WBC(×109/L)a | 11.67±4.28 | 12.14±4.42 | 11.22±4.13 | -1.117 | 0.266 |
Hb(g/L)a | 103.39±25.57 | 109.32±27.06 | 97.77±22.92 | -2.410 | 0.018 |
PLT(×109/L)b | 153.00(90.00, 197.00) | 163.00(99.00, 197.00) | 126.00(85.75, 217.00) | -0.564 | 0.573 |
TB(μmol/L)b | 25.00(16.00, 38.50) | 24.00(15.50, 38.50) | 25.50(16.00, 39.25) | -0.212 | 0.832 |
ALB(g/L)a | 27.24±6.04 | 27.17±6.52 | 27.30±5.61 | 0.115 | 0.909 |
注:a为(x±s);b为M(Q1, Q3);c为例(%);APACHE Ⅱ为急性生理学与慢性健康状况评分Ⅱ;SAPS Ⅲ为简化急性生理学评分Ⅲ;GCS为格拉斯哥昏迷评分;HR为心率;MAP为平均动脉压;PaO2为动脉血氧分压;FiO2为吸入气氧浓度;pH为动脉血pH值;Na+为血清钠离子浓度;K+为血清钾离子浓度;Cr为血清肌酐浓度;WBC为血白细胞计数;Hb为血红蛋白浓度;PLT为血小板计数;TB为血清总胆红素浓度;ALB为血清白蛋白浓度;1 mmHg=0.133 kPa |
以患者是否气管切开为因变量,将上述两组间差异有统计学意义的指标作为协变量,纳入Logistic回归方程进行逐步回归分析,发现GCS评分≤8分、颈脊髓损伤、脓毒症是引起EICU内接受IMV患者气管切开的独立危险因素。具体结果见表 2。
变量 | B值 | OR | 95%CI | P值 |
GCS评分≤8 | 1.63 | 5.10 | 1.68~15.42 | 0.004 |
颈脊髓损伤 | 2.33 | 10.32 | 2.74~38.82 | 0.001 |
脓毒症 | 1.24 | 3.45 | 1.39~8.54 | 0.007 |
注:GCS为格拉斯哥昏迷评分 |
GCS评分基于患者对刺激的基本反应来评估意识障碍程度[7],GCS评分越低表明患者意识障碍越严重,严重意识障碍会导致患者咳嗽反射减弱、气道保护能力差,在合并肺部感染后病情较难被控制,短时间内难以撤离呼吸机,更难拔除气管插管。本研究发现GCS评分≤8分是引起IMV患者气管切开的独立危险因素(OR=5.10,95% CI: 1.68~15.42,P < 0.01),意味着EICU中GCS评分≤8分的IMV患者,需要气管切开的平均概率是GCS评分 > 8分患者的5.10倍,与Ahmadinegad等[8]及Yaghi等[9]的研究结果相似。亦有研究认为GCS评分≤6分为意识障碍患者气管切开的独立危险因素[10]。
呼吸肌主要由膈肌和肋间肌组成,膈肌受膈神经支配,而膈神经由颈脊髓C3~C5前支组成,颈脊髓损伤越重、损伤平面越高,越容易导致呼吸肌麻痹,甚至危及生命[11-12]。本研究发现颈脊髓损伤是接受IMV患者气管切开的独立危险因素(OR=10.32,95%CI: 2.74~38.82,P < 0.01),通常C4及以上水平完全性颈脊髓损伤患者需要气管切开[13-14],有时甚至C5或C6水平的颈脊髓损伤也可能导致患者气管切开[15-16]。所以对于颈脊髓损伤患者,在适当时机为其进行气管切开,可以保障其生命安全,为后续进一步治疗创造条件[17-18]。
本研究还发现脓毒症也是EICU内接受IMV的患者气管切开的独立危险因素(OR=3.45,95%CI: 1.39~8.54,P < 0.01),与Maier等[19]研究结果相似。大多数接受IMV患者的脓毒症是由肺炎引起的[20],因患者肺部情况差而难以脱离呼吸机,脓毒症还可导致脓毒症性脑病及GCS评分下降[21],增加脱机拔管的难度。
对于接受IMV的患者,长时间经口或经鼻气管插管对患者咽喉及气道产生较大刺激,易致其损伤、水肿;气管插管较长的管腔增加了吸痰的难度,导管内壁易形成痰痂,有利于细菌定植生长,并且有堵塞管腔引发窒息的风险[22]。与气管插管相比,气管切开具有下列优点[23-24],包括:易于固定及引流呼吸道分泌物;气道阻力低;能够经口进食,可进行口腔护理;患者耐受性好,可以减少镇静药物使用;可以降低呼吸机相关肺炎的发生率;可以缩短脱机时间。但是气管切开并非没有风险,该操作可引起出血、切口感染、气管食管瘘等并发症,所以需要把握好气管切开的时机与适应证;对于气管切开的最佳时机仍存在争议[25],目前倾向于在气管插管后7 d或14 d以内进行气管切开[26-27]。
对于存在GCS评分≤8分、颈脊髓损伤、脓毒症的患者应重点关注,因其或许需要进行早期气管切开以挽救生命,从而有机会接受后续进一步治疗。对于在EICU中接受IMV的患者,应积极治疗原发病,改善患者全身情况,加强气道管理以降低呼吸机相关肺炎发生率,使患者得以尽早脱机、拔管。
本研究的局限性为单中心、回顾性研究,纳入研究的患者数量较少,影响患者气管切开的因素可能尚未考虑周到,研究结果有待于多中心、大样本、前瞻性研究来证实。
利益冲突 所有作者声明无利益冲突
作者贡献声明 侍冬成:研究设计,数据收集及整理,统计学分析,论文撰写;李永霞:数据收集及整理;姜家梅:数据收集及整理;赵钢:研究设计,论文修改;封启明:研究设计,论文修改;吴蔚:统计学分析,论文修改
[1] | Machado-Alba JE, Usma-Valencia AF, Sánchez-Ramírez N, et al. Factors associated with survival in patients undergoing invasive mechanical ventilation in an intensive care unit in Colombia, 2017-2018: a retrospective cohort study[J]. Drugs Real World Outcomes, 2021, 8(3): 417-425. DOI:10.1007/s40801-021-00241-y |
[2] | McLachlan B, Bilbrey C, Mausner K, et al. Effectiveness of manual ventilation in intubated helicopter emergency services-transported trauma patients[J]. Air Med J, 2019, 38(4): 273-275. DOI:10.1016/j.amj.2019.03.013 |
[3] | Slutsky AS. History of mechanical ventilation. from Vesalius to ventilator-induced lung injury[J]. Am J Respir Crit Care Med, 2015, 191(10): 1106-1115. DOI:10.1164/rccm.201503-0421PP |
[4] | Joanne Elliot Z, Charlton Elliot S. An overview of mechanical ventilation in the intensive care unit[J]. Nurs Stand, 2018, 32(28): 41-49. DOI:10.7748/ns.2018.e10710 |
[5] | Park YS, Lee J, Lee SM, et al. Factors determining the timing of tracheostomy in medical ICU of a tertiary referral hospital[J]. Tuberc Respir Dis (Seoul), 2012, 72(6): 481-485. DOI:10.4046/trd.2012.72.6.481 |
[6] | Freeman BD. Tracheostomy update: when and how[J]. Crit Care Clin, 2017, 33(2): 311-322. DOI:10.1016/j.ccc.2016.12.007 |
[7] | Azabou E, Fischer C, Guerit JM, et al. Neurophysiological assessment of brain dysfunction in critically ill patients: an update[J]. Neurol Sci, 2017, 38(5): 715-726. DOI:10.1007/s10072-017-2824-x |
[8] | Ahmadinegad M, Karamouzian S, Lashkarizadeh MR. Use of Glasgow Coma scale as an indicator for early tracheostomy in patients with severe head injury[J]. Tanaffos, 2011, 10(1): 26-30. |
[9] | Yaghi S, Moore P, Ray B, et al. Predictors of tracheostomy in patients with spontaneous intracerebral hemorrhage[J]. Clin Neurol Neurosurg, 2013, 115(6): 695-698. DOI:10.1016/j.clineuro.2012.08.010 |
[10] | Franco-Jiménez JA, Ceja-Espinosa A, Álvarez-Vázquez L, et al. Associated factors for Tracheostomy in adults with severe traumatic brain injury. Score proposal[J]. Cir Cir, 2020, 88(2): 200-205. DOI:10.24875/CIRU.19001247 |
[11] | Beom JY, Seo HY. The need for early tracheostomy in patients with traumatic cervical cord injury[J]. Clin Orthop Surg, 2018, 10(2): 191-196. DOI:10.4055/cios.2018.10.2.191 |
[12] | Higashi T, Eguchi H, Wakayama Y, et al. Analysis of the risk factors for tracheostomy and decannulation after traumatic cervical spinal cord injury in an aging population[J]. Spinal Cord, 2019, 57(10): 843-849. DOI:10.1038/s41393-019-0289-x |
[13] | 刘瑞端, 王永辉, 肖荣驰, 等. 颈脊髓损伤后气管切开的危险因素分析[J]. 中国骨与关节损伤杂志, 2021, 36(1): 33-34. DOI:10.7531/j.issn.1672-9935.2021.01.009 |
[14] | Tanaka J, Yugue I, Shiba K, et al. A study of risk factors for tracheostomy in patients with a cervical spinal cord injury[J]. Spine (Phila Pa 1976), 2016, 41(9): 764-771. DOI:10.1097/BRS.0000000000001317 |
[15] | Como JJ, Sutton ERH, McCunn M, et al. Characterizing the need for mechanical ventilation following cervical spinal cord injury with neurologic deficit[J]. J Trauma, 2005, 59(4): 912-916. DOI:10.1097/01.ta.0000187660.03742.a6 |
[16] | McCully BH, Fabricant L, Geraci T, et al. Complete cervical spinal cord injury above C6 predicts the need for tracheostomy[J]. Am J Surg, 2014, 207(5): 664-668. DOI:10.1016/j.amjsurg.2014.01.001 |
[17] | 孙大卫, 张正丰. 颈脊髓损伤后气管切开危险因素和预测模型的研究进展[J]. 国际骨科学杂志, 2021, 42(1): 1-5. DOI:10.3969/j.issn.1673-7083.2021.01.001 |
[18] | Galeiras R, Mourelo M, Bouza MT, et al. Risk analysis based on the timing of tracheostomy procedures in patients with spinal cord injury requiring cervical spine surgery[J]. World Neurosurg, 2018, 116: e655-e661. DOI:10.1016/j.wneu.2018.05.065 |
[19] | Maier IL, Schramm K, Bähr M, et al. Predictive factors for the need of tracheostomy in patients with large vessel occlusion stroke being treated with mechanical thrombectomy[J]. Front Neurol, 2021, 12: 728624. DOI:10.3389/fneur.2021.728624 |
[20] | Kalil AC, Metersky ML, Klompas M, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the infectious diseases society of America and the American thoracic society[J]. Clin Infect Dis, 2016, 63(5): e61-e111. DOI:10.1093/cid/ciw353 |
[21] | Prescott HC, Langa KM, Iwashyna TJ. Readmission diagnoses after hospitalization for severe Sepsis and other acute medical conditions[J]. JAMA, 2015, 313(10): 1055-1057. DOI:10.1001/jama.2015.1410 |
[22] | 陈凯, 严闽航, 李俊, 等. 早期气管切开对重型颅脑损伤患者的临床疗效分析[J]. 创伤与急诊电子杂志, 2020, 8(3): 106-110. DOI:10.16746/j.cnki.11-9332/r.2020.03.002 |
[23] | 林康越, 廖晓荣, 叶石生, 等. 重症脑梗死合并肺感染患者早期气管切开术的临床疗效[J]. 中国当代医药, 2021, 28(34): 83-86. DOI:10.3969/j.issn.1674-4721.2021.34.023 |
[24] | Kang Y, Yoo W, Kim Y, et al. Effect of early tracheostomy on clinical outcomes in patients with prolonged acute mechanical ventilation: a single-center study[J]. Tuberc Respir Dis (Seoul), 2020, 83(2): 167-174. DOI:10.4046/trd.2019.0082 |
[25] | Samiei Nasr D, Khoundabi B, Monshizadeh Azar G, et al. Beneficial outcomes of early tracheostomy in patients requiring prolonged mechanical ventilation[J]. Tanaffos, 2020, 19(4): 350-355. |
[26] | Marinaki C, Kapadochos T, Katsoulas T, et al. Early versus Late Tracheostomy Promotes Weaning in Intensive Care Unit Patients: a retrospective observational study[J]. Acta Biomed, 2022, 93(S2): e2022152. DOI:10.23750/abm.v93iS2.12998 |
[27] | Hallan DR, Simion C, Rizk E. Early versus late tracheostomy in spontaneous intracerebral hemorrhage[J]. Cureus, 2022, 14(4): e24059. DOI:10.7759/cureus.24059 |