中华急诊医学杂志  2023, Vol. 32 Issue (1): 118-122   DOI: 10.3760/cma.j.issn.1671-0282.2023.01.023
新冠肺炎疫情期间院外心脏骤停流行病学特征和救治质量的变化
赵雪1,2 , 桑文涛1,2 , 潘畅1,2 , 潘玉惠1,2 , 徐峰1,2     
1. 山东大学齐鲁医院急诊科,济南 250012;
2. 山东省急危重症临床医学研究中心,济南 250012

院外心脏骤停(out-of-hospital cardiac arrest, OHCA)是全球性的公共健康问题,OHCA患者需要及时的救治才能获得良好的预后[1]。首次监测心律、旁观者目击、旁观者心肺复苏(bystander cardiopulmonary resuscitation, BCPR)、旁观者应用自动体外除颤设备(automated external defibrillator, AED)以及急诊医疗服务(emergency medical services, EMS)响应的时间等因素均可以显著影响OHCA的预后[2]

2019年末,新冠肺炎(coronavirus disease 2019, COVID-19)的发生对全球公共卫生安全造成了严重的影响,世界卫生组织在2020年3月11日宣布其为“Pandemic”[3]。各个国家和地区为减少COVID-19对公众安全的影响,采取了一系列措施,包括限制人员流动及其他措施。这些措施的实施对公共卫生服务系统产生了一定的不利影响,例如ST段抬高型急性心肌梗死患者接受再灌注治疗的时间延迟约20.82 min,并且接受再灌注治疗的比例从59.44%下降至51.56%[4];也影响了OHCA救治的关键环节,例如EMS响应时间延长[5]、旁观者救治比例下降[6-11]、高级气道建立比例下降[12]等。

本文将综述现有描述COVID-19期间OHCA流行病学特征的研究,介绍COVID-19对OHCA流行病学特征和救治质量的影响,旨在为COVID-19期间OHCA的救治提供指导。

1 COVID-19对OHCA发病率及发病特征的影响

COVID-19通过病毒感染带来的直接影响,以及对公众心理、卫生系统资源分配的间接影响,改变了许多疾病的流行病学特征[13],其中也包括OHCA的流行病学特征[2]。法国巴黎的一项研究表明,与COVID-19流行之前相比,COVID-19期间的OHCA每周最高发病率增加接近1倍,从每百万居民发生13.42例增加到26.64例[14]。其他国家和地区的研究也得出类似结论,COVID-19使OHCA的发病率显著增加[5, 8-10, 14-21]。但瑞士的全国性研究显示,在COVID-19发病率高的地区,OHCA的发病率降低,这可能与患者或家属不愿意呼叫EMS,导致大量数据未获取等相关[10](附表1)。

COVID-19对OHCA的发病特征也产生了影响,例如骤停地点[5-6, 12, 14, 16-17, 21-24]、首次监测心律[5-6, 12, 14, 16-17, 21, 23-25]、骤停病因[5, 15, 17, 22-23]等。在COVID-19流行期间,OHCA发生在家中的比例升高[5-6, 12, 14, 17, 21-23],在法国巴黎的相关研究中这一比例升高尤为显著,由76.8%升高至90.2%[14],这可能与限制出行、居家隔离等措施的出台有关。首次监测心律(可除颤心律的比例[5-6, 12, 14, 16-17, 21-25]及心源性病因的比例[17, 22, 24])在COVID-19期间也有一定程度变化,多数研究表明,在COVID-19期间首次监测心律为可除颤心律的比例明显下降,这可能与EMS响应时间延长相关[26],也可能是导致预后较差的原因。在英美等国家的多项研究中,COVID-19期间心源性OHCA的比例明显下降,而呼吸源性OHCA的比例上升[12, 17, 20],COVID-19感染可能是改变OHCA病因特征的直接原因,COVID-19的直接损伤可能导致呼吸源性OHCA增多[17];瑞典的研究显示,COVID-19流行期间,OHCA患者中约有10%感染了COVID-19,这可能是呼吸源性(窒息)OHCA的比例从3.9%(流行前期)升高到10.5%(流行期)的重要原因[20]

2 COVID-19对EMS系统的影响

EMS是由专业人员组成的,通过通讯、医疗和运输等手段给予患者适当处理并就近转运至合适的医疗机构行专业救治的系统,是医疗卫生系统的重要组成部分。COVID-19给医疗卫生系统带来巨大挑战,许多国家调整了卫生政策,其中EMS受到的影响尤其显著,例如增加EMS人员数量及急救车辆[5],取消EMS常规医疗活动,专注于COVID-19患者的救治,并避免非COVID-19患者暴露在感染风险中[14]

美国、英国和意大利的诸多相关研究结果显示,在COVID-19期间,EMS任务量明显增加,负荷显著加重[15-17];与此同时带来新的问题,EMS系统响应时间延长[5, 14, 16, 18](附表1),这也导致危重症疾病(如心脏骤停、急性心肌梗死等)救治的延迟[4, 27, 28]。但是,伊朗德黑兰得出的结论与上述结论相反,EMS的出诊量较非COVID-19时期减少了17.8%[29],出诊量的减少与出行限制等封锁措施以及医疗资源缺乏等因素相关,也可能与患者的恐惧心理相关(恐惧经EMS或医院感染COVID-19);法国等国家和地区的研究也得出了相似的结论[29-30]。此外意大利威尼斯地区的相关显示,在COVID-19时期EMS任务量较非COVID-19时期没有变化[31],但EMS救治的疾病种类发生了重大变化,因创伤而呼叫EMS的比例下降了81%[32]

EMS响应时间是指从呼叫EMS至第一辆急救车辆停在最靠近患者位置的时间间隔[33]。响应时间分为三部分:呼叫EMS至调度急救车辆的时间、急救车辆调度至出发的时间、急救车辆抵达患者位置的时间[15]。多数研究显示,在COVID-19期间,EMS响应时间延长[5, 7, 14, 16, 18-19],即使在COVID-19发病率较低的地区,EMS响应时间仍延长[9]。中国台湾地区的研究表明,在COVID-19时期,调度员接听电话时需要收集患者COVID-19感染病史、高风险地区旅居史等信息,调度员工作量增加,呼叫EMS至调度急救车辆的时间延长[19]。英国伦敦的研究显示,在COVID-19时期,EMS出诊量增加以及呼叫至调度急救车辆的时间延长,导致了响应时间的延长[17]。急救车辆调度至出发时间延迟可能与EMS人员需要穿戴个人防护装备(personal protective equipment, PPE)有关[19],并且PPE的穿戴可能会降低心肺复苏(cardiopulmonary resuscitation, CPR)的质量[34]。然而,日本的一项研究得出了与上述研究相反的结论,在COVID-19期间,急救车辆抵达患者位置的时间缩短,使EMS整体响应时间明显缩短[8],这可能与地区封锁后道路车辆减少有关[15]。另有研究显示,在COVID-19时期,EMS响应时间较非COVID-19时期没有明显变化[10]

3 COVID-19对OHCA旁观者救治的影响

研究表明旁观者目击OHCA与旁观者救治比例的变化并不一致。瑞典的研究显示,旁观者目击OHCA的比例较非COVID-19时期增加约10%[20]。多项研究表明,旁观者救治(包括BCPR和旁观者应用AED)比例下降[6-11];然而在英国的一项研究中,BCPR增加10%以上[17];美国、意大利、澳大利亚的相关研究却表明旁观者目击OHCA和旁观者救治的比例均没有明显变化[15-16, 18](附表1)。

COVID-19为呼吸道传播疾病,可能通过CPR过程中产生的气溶胶传播[35],旁观者对OHCA患者进行CPR有感染COVID-19的风险[36]。COVID-19流行期间,旁观者救治比例的下降与公众的恐惧心理密切相关[30],未经培训的公众或非专业人员更加明显[6]。多项研究表明,在COVID-19期间,旁观者对OHCA患者进行呼吸、脉搏检查并进行施救的意愿显著下降[9, 17, 30];而若有可用的防护设备时,旁观者救治的意愿明显增加[11]。丹麦和瑞典等国家地区的研究显示,COVID-19期间,更多的旁观者仅给予胸外按压,胸外按压加通气的CPR比例较前下降[20, 31]。中国台湾地区的一项研究得出了与上述相反的结果,BCPR的比例在COVID-19期间升高,这可能与OHCA发生在家中的比例升高相关,相较于陌生人,家庭成员更愿意向OHCA患者实施救治,但这也受CPR普及程度的影响[19]。由于存在文化差异,新加坡的研究表明发生在家中的OHCA并未获得更多的BCPR,这可能与为家人施救的心理障碍相关[6]

4 COVID-19对OHCA预后的影响

研究显示,COVID-19的感染和流行与OHCA的预后具有一定的相关性。几乎所有研究都显示,在COVID-19期间,OHCA的预后更差[6-7, 37],与OHCA相关的死亡人数及病死率大幅增加[24]。澳大利亚的一项研究提到,COVID-19流行期间,OHCA幸存者由COVID-19前的59.1人次/100万人,下降至24.1人次/100万人[22]。伦敦的一项研究表明,COVID-19时期OHCA最高病死率可达98.4%[17]。OHCA患者病死率的增加可能是因为COVID-19对机体的直接损伤导致,也可能是因COVID-19流行出现的卫生系统负荷过重以及相关卫生政策的变化间接导致[14]

除病死率外,其他的预后指标也更差。自主循环恢复(return of spontaneous circulation, ROSC)的比例由COVID-19前期的6.5%~48.6%下降至COVID-19流行期的2.6%~37.8%[5, 8, 10, 12, 15, 17, 19-21, 23-25](附表1),存活入院的比率由22.8%~32.1%下降至12.8%~22.0%[14, 21],存活出院的比率由9.8%~38.9%下降至7.5%~33.0%[20-21],30 d存活率由10.6%下降至4.4%[17]

COVID-19期间OHCA的预后也会受到COVID-19发病率或病死率的影响。多项研究表明,在COVID-19发病率或病死率较高的地区,OHCA预后更差,病死率更高;而在发病率或病死率低的地区,OHCA预后较非COVID-19时期没有明显差异[12, 18]。瑞士的一项研究显示COVID-19流行期间,高发病率地区OHCA病死率较流行前期增加了27.8%;而低发病率地区,病死率却下降了0.7%[10]

OHCA预后的改变可能与以下因素相关。首先,OHCA接受救治的时间延迟,错过黄金抢救时间,这可能与医疗系统超负荷运转[15-17]、EMS响应时间延长[5, 15-16, 18-19]、针对COVID-19疑似或确诊患者采取特定的CPR原则(例如穿戴PPE等)[12],家庭成员未能及时识别疾病的严重程度[16]等因素相关;其次,由于公众对COVID-19的恐惧,患者往往不能在疾病初期及时就医,疾病恶化,错过最佳救治时间,使得预后更差[6, 10, 14, 17, 21, 29, 37-38];最后,面对COVID-19这一突发疾病,救治措施不完善,使合并COVID-19的OHCA患者预后不佳[12]

5 总结与展望

COVID-19疫情这一突发公共卫生事件给世界卫生系统带来巨大挑战,使OHCA救治现状更加严峻。在疫情期间,COVID-19感染、延迟就医以及卫生系统负荷过重等因素与OHCA发病率的改变密切相关;EMS响应时间延长和旁观者救治比例低是影响OHCA预后的重要原因。目前全球仍处于COVID-19疫情未完全控制的状态,依据OHCA在疫情期间的流行病学特点和预后表现,制定更加适宜的CPR指南仍十分重要,例如在EMS人员穿戴PPE时,更频繁地进行轮转,避免PPE的穿戴影响胸外按压的质量;更加强调胸外按压而非辅助通气,必要时以布或毛巾盖在患者口鼻上,降低COVID-19通过呼吸道传播的风险[39]。在制定指南的基础上,应协调卫生系统资源,制定优化资源的EMS调度体系,保持EMS对时间依赖性强的疾病(例如OHCA、急性心肌梗死等)的敏感性,并可以始终做出快速反应。同时应推广COVID-19疫苗的接种,疫苗接种有助于降低COVID-19发病风险,可以减轻公众对疾病感染的恐惧,间接减少延迟就医的比例,降低OHCA发病率并改善预后。加强公众CPR培训,增强旁观者识别、救治OHCA患者的能力,是改善OHCA预后的重要措施。

利益冲突   所有作者声明无利益冲突

本文附录请登陆中华急诊网(www.cem.org.cn)浏览(Html格式全文)

参考文献
[1] Kiguchi T, Okubo M, Nishiyama C, et al. Out-of-hospital cardiac arrest across the World: first report from the International Liaison Committee on Resuscitation (ILCOR)[J]. Resuscitation, 2020, 152: 39-49. DOI:10.1016/j.resuscitation.2020.02.044
[2] Myat A, Song KJ, Rea T. Out-of-hospital cardiac arrest: current concepts[J]. Lancet, 2018, 391(10124): 970-979. DOI:10.1016/s0140-6736(18)30472-0
[3] Myat A, Song KJ, Rea T. Out-of-hospital cardiac arrest: current concepts[J]. Lancet, 2018, 391(10124): 970-979. DOI:10.1016/s0140-6736(18)30472-0
[4] Xiang DC, Xiang X, Zhang W, et al. Management and outcomes of patients with STEMI during the COVID-19 pandemic in China[J]. J Am Coll Cardiol, 2020, 76(11): 1318-1324. DOI:10.1016/j.jacc.2020.06.039
[5] Baldi E, Sechi GM, Mare C, et al. COVID-19 kills at home: the close relationship between the epidemic and the increase of out-of-hospital cardiac arrests[J]. Eur Heart J, 2020, 41(32): 3045-3054. DOI:10.1093/eurheartj/ehaa508
[6] Lim SL, Shahidah N, Saffari SE, et al. Impact of COVID-19 on out-of-hospital cardiac arrest in Singapore[J]. Int J Environ Res Public Health, 2021, 18(7): 3646. DOI:10.3390/ijerph18073646
[7] Baldi E, Sechi GM, Mare C, et al. Out-of-hospital cardiac arrest during the Covid-19 outbreak in Italy[J]. N Engl J Med, 2020, 383(5): 496-498. DOI:10.1056/NEJMc2010418
[8] Nishiyama C, Kiyohara K, Iwami T, et al. Influence of COVID-19 pandemic on bystander interventions, emergency medical service activities, and patient outcomes in out-of-hospital cardiac arrest in Osaka City, Japan[J]. Resusc Plus, 2021, 5: 100088. DOI:10.1016/j.resplu.2021.100088
[9] Uy-Evanado A, Chugh HS, Sargsyan A, et al. Out-of-hospital cardiac arrest response and outcomes during the COVID-19 pandemic[J]. JACC Clin Electrophysiol, 2021, 7(1): 6-11. DOI:10.1016/j.jacep.2020.08.010
[10] Baldi E, Auricchio A, Klersy C, et al. Out-of-hospital cardiac arrests and mortality in Swiss Cantons with high and low COVID-19 incidence: a nationwide analysis[J]. Resusc Plus, 2021, 6: 100105. DOI:10.1016/j.resplu.2021.100105
[11] Grunau B, Bal J, Scheuermeyer F, et al. Bystanders are less willing to resuscitate out-of-hospital cardiac arrest victims during the COVID-19 pandemic[J]. Resusc Plus, 2020, 4: 100034. DOI:10.1016/j.resplu.2020.100034
[12] Chan PS, Girotra S, Tang YY, et al. Outcomes for out-of-hospital cardiac arrest in the United States during the coronavirus disease 2019 pandemic[J]. JAMA Cardiol, 2021, 6(3): 296-303. DOI:10.1001/jamacardio.2020.6210
[13] Logroscino G, Beghi E. Stroke epidemiology and COVID-19 pandemic[J]. Curr Opin Neurol, 2021, 34(1): 3-10. DOI:10.1097/WCO.0000000000000879
[14] Marijon E, Karam N, Jost D, et al. Out-of-hospital cardiac arrest during the COVID-19 pandemic in Paris, France: a population-based, observational study[J]. Lancet Public Health, 2020, 5(8): e437-e443. DOI:10.1016/S2468-2667(20)30117-1
[15] Paoli A, Brischigliaro L, Scquizzato T, et al. Out-of-hospital cardiac arrest during the COVID-19 pandemic in the Province of Padua, Northeast Italy[J]. Resuscitation, 2020, 154: 47-49. DOI:10.1016/j.resuscitation.2020.06.031
[16] Glober NK, Supples M, Faris G, et al. Out-of-hospital cardiac arrest volumes and characteristics during the COVID-19 pandemic[J]. Am J Emerg Med, 2021, 48: 191-197. DOI:10.1016/j.ajem.2021.04.072
[17] Fothergill RT, Smith AL, Wrigley F, et al. Out-of-hospital cardiac arrest in London during the COVID-19 pandemic[J]. Resusc Plus, 2021, 5: 100066. DOI:10.1016/j.resplu.2020.100066
[18] Talikowska M, Ball S, Tohira H, et al. No apparent effect of the COVID-19 pandemic on out-of-hospital cardiac arrest incidence and outcome in Western Australia[J]. Resusc Plus, 2021, 8: 100183. DOI:10.1016/j.resplu.2021.100183
[19] Yu JH, Liu CY, Chen WK, et al. Impact of the COVID-19 pandemic on emergency medical service response to out-of-hospital cardiac arrests in Taiwan: a retrospective observational study[J]. Emerg Med J, 2021, 38(9): 679-684. DOI:10.1136/emermed-2020-210409
[20] Sultanian P, Lundgren P, Strömsöe A, et al. Cardiac arrest in COVID-19: characteristics and outcomes of in- and out-of-hospital cardiac arrest. A report from the Swedish Registry for Cardiopulmonary Resuscitation[J]. Eur Heart J, 2021, 42(11): 1094-1106. DOI:10.1093/eurheartj/ehaa1067
[21] Rosell Ortiz F, Fernández Del Valle P, Knox EC, et al. Influence of the Covid-19 pandemic on out-of-hospital cardiac arrest. A Spanish nationwide prospective cohort study[J]. Resuscitation, 2020, 157: 230-240. DOI:10.1016/j.resuscitation.2020.09.037
[22] Ball J, Nehme Z, Bernard S, et al. Collateral damage: hidden impact of the COVID-19 pandemic on the out-of-hospital cardiac arrest system-of-care[J]. Resuscitation, 2020, 156: 157-163. DOI:10.1016/j.resuscitation.2020.09.017
[23] Cho JW, Jung H, Lee MJ, et al. Preparedness of personal protective equipment and implementation of new CPR strategies for patients with out-of-hospital cardiac arrest in the COVID-19 era[J]. Resusc Plus, 2020, 3: 100015. DOI:10.1016/j.resplu.2020.100015
[24] Baert V, Jaeger D, Hubert H, et al. Assessment of changes in cardiopulmonary resuscitation practices and outcomes on 1005 victims of out-of-hospital cardiac arrest during the COVID-19 outbreak: registry-based study[J]. Scand J Trauma Resusc Emerg Med, 2020, 28(1): 119. DOI:10.1186/s13049-020-00813-x
[25] Lai PH, Lancet EA, Weiden MD, et al. Characteristics associated with out-of-hospital cardiac arrests and resuscitations during the novel Coronavirus disease 2019 pandemic in New York City[J]. JAMA Cardiol, 2020, 5(10): 1154-1163. DOI:10.1001/jamacardio.2020.2488
[26] Holmén J, Herlitz J, Ricksten SE, et al. Shortening ambulance response time increases survival in out-of-hospital cardiac arrest[J]. J Am Heart Assoc, 2020, 9(21): e017048. DOI:10.1161/JAHA.120.017048
[27] Yamaji K, Kohsaka S, Inohara T, et al. Percutaneous coronary intervention during the COVID-19 pandemic in Japan: insights from the nationwide registration data[J]. Lancet Reg Health West Pac, 2022, 22: 100434. DOI:10.1016/j.lanwpc.2022.100434
[28] Song CX, Liu S, Yin D, et al. Impact of public health emergency response to COVID-19 on management and outcome for STEMI patients in Beijing-a single-center historic control study[J]. Curr Probl Cardiol, 2021, 46(3): 100693. DOI:10.1016/j.cpcardiol.2020.100693
[29] Hasani-Sharamin P, Saberian P, Sadeghi M, et al. Characteristics of emergency medical service missions in out-of-hospital cardiac arrest and death cases in the periods of before and after the COVID-19 pandemic[J]. Prehosp Disaster Med, 2021, 36(6): 676-683. DOI:10.1017/S1049023X21001138
[30] Charlton K, Limmer M, Moore H. Incidence of emergency calls and out-of-hospital cardiac arrest deaths during the COVID-19 pandemic: findings from a cross-sectional study in a UK ambulance service[J]. Emerg Med J, 2021, 38(6): 446-449. DOI:10.1136/emermed-2020-210291
[31] Gregers MCT, Andelius L, Malta Hansen C, et al. Activation of citizen responders to out-of-hospital cardiac arrest during the COVID-19 outbreak in Denmark 2020[J]. J Am Heart Assoc, 2022, 11(6): e024140. DOI:10.1161/JAHA.121.024140
[32] Stella F, Alexopoulos C, Scquizzato T, et al. Impact of the COVID-19 outbreak on emergency medical system missions and emergency department visits in the Venice area[J]. Eur J Emerg Med, 2020, 27(4): 298-300. DOI:10.1097/mej.0000000000000724
[33] Perkins. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update of the Utstein Resuscitation Registry Templates for out-of-hospital cardiac arrest: a statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, Resuscitation Council of Asia); and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation[J]. Circulation, 2015, 132(13): 1286-1300. DOI:10.1161/cir.0000000000000144
[34] Sahu AK, Suresh S, Mathew R, et al. Impact of personal protective equipment on the effectiveness of chest compression - A systematic review and meta-analysis[J]. Am J Emerg Med, 2021, 39: 190-196. DOI:10.1016/j.ajem.2020.09.058
[35] Edelson DP, Sasson C, Chan PS, et al. Interim guidance for basic and advanced life support in adults, children, and neonates with suspected or confirmed COVID-19: from the emergency cardiovascular care committee and get with the guidelines-resuscitation adult and pediatric task forces of the American Heart Association[J]. Circulation, 2020, 141(25): e933-e943. DOI:10.1161/CIRCULATIONAHA.120.047463
[36] Metelmann C, Metelmann B, Müller MP, et al. First responder systems can stay operational under pandemic conditions: results of a European survey during the COVID-19 pandemic[J]. Scand J Trauma Resusc Emerg Med, 2022, 30(1): 10. DOI:10.1186/s13049-022-00998-3
[37] Panchal AR, Bartos JA, Cabañas JG, et al. Part 3: adult basic and advanced life support: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2020, 142(16_suppl_2): S366-S468. DOI:10.1161/CIR.0000000000000916
[38] Borkowska MJ, Smereka J, Safiejko K, et al. Out-of-hospital cardiac arrest treated by emergency medical service teams during COVID-19 pandemic: a retrospective cohort study[J]. Cardiol J, 2021, 28(1): 15-22. DOI:10.5603/CJ.a2020.0135
[39] 中国心胸血管麻醉学会心肺复苏委员会, 中国心胸血管麻醉学会急救与复苏分会. 新型冠状病毒肺炎流行期间心肺复苏专家共识[J]. 中国循环杂志, 2021, 36(5): 417-422. DOI:10.3969/j.issn.1000-3614.2021.05.001