中华急诊医学杂志  2022, Vol. 31 Issue (1): 124-128   DOI: 10.3760/cma.j.issn.1671-0282.2022.01.027
头颅CT对心肺复苏后昏迷患者神经功能预后的判断价值研究进展
王淦楠 , 张劲松     
南京医科大学第一附属医院急诊中心,南京 210029

心脏骤停(cardiac arrest, CA)是世界范围内严重的公众健康问题,也是成人死亡和神经功能损伤的主要原因之一[1]。随着心肺复苏(cardiopulmonary resuscitation, CPR)技术和体外生命支持理念的不断进步,越来越多的CA患者能够实现自主循环恢复(return of spontaneous circulation, ROSC)。然而,CA后缺血缺氧性脑损伤是影响患者病死率和致残率的重要因素[2]。据统计,美国成人院外CA(out-of-hospital CA, OHCA)年发患者数超过356 000例,出院成活率为10.4%,神经功能预后良好患者占8.2%。院内CA(in-hospital CA, IHCA)发病率平均为10.16/1000住院患者,出院存活率为25.8%,预后良好患者占82%[3]。我国北京地区CA患者预后评价研究表明,OHCA及IHCA患者出院成活率分别为1.3% 和9.1%,神经功能预后良好患者仅占1% 和6.4%[4-5]

准确可靠的评估手段对CA后脑损伤患者神经功能预后判断和治疗方案的选择具有重要的临床意义。由于脑组织对缺血缺氧的耐受性低及CPR后全身性缺血-再灌注损伤,细胞膜离子通透性改变(细胞毒性)和血脑屏障破坏(血管源性)共同作用导致脑水肿。肿胀的神经细胞继而抑制脑内氧的输送和摄取,进一步加重脑水肿,并形成相互影响的恶性循环,最终造成神经细胞坏死,引起相应的神经功能缺损[6]。临床上,采用神经影像学进行预后评估的优势在于其可提供全脑直观的结构性损伤图像并量化脑损伤严重程度[7],其中以头颅CT和MRI应用最为广泛。目前,神经影像学相关研究对预后评估的准确性和特异性存在较大差异,本文就头颅CT对CA后昏迷患者神经功能预后判断价值的研究进展做一综述。

1 头颅CT评估特点

与MRI、经颅多普勒超声(transcranial doppler, TCD)等其他影像学方法预测CPR患者神经功能预后相比较,头颅CT具有“早期判断、定量评估”的特点。头颅CT多推荐于CA后24~48 h实施,通过定量测定灰质/白质比例(gray-white matter ratio, GWR),反映脑水肿程度并判断不良预后[8]。头颅MRI多于CA后2~7 d实施,细胞毒性损伤可表现为弥散加权成像中的弥散受限及其量化指标——表观弥散系数降低[8]。但是MRI对检查条件要求较高,携带普通转运呼吸机、安装心脏起搏器或体内有金属植入物的患者均受限制。TCD具有无创、床旁实时监测的特点,目前常用于CA后脑血流变化的评估。有研究表明,TCD搏动指数升高、舒张期血流速度降低可预测神经功能不良预后[9]。然而,TCD实施易受声窗穿透性和操作熟练程度的影响,根据现有研究证据,尚未推荐其应用于CA后神经功能预后评估。

2 头颅CT评估时机

临床实践中,CPR患者通常在ROSC后考虑头颅CT检查以评估病情。虽然大多数研究利用初始头颅CT检查结果进行神经功能预后判断,但是将初始检查的结果用于预后判断并不合适。类似于缺血性脑卒中的CT表现,CPR后脑组织缺血性改变常存在时间上的延迟,ROSC后即刻检查常提示正常的影像学表现[10]。然而,实施即刻头颅CT检查的临床意义主要在于可明确是否为颅内病变导致的CA,如脑出血、蛛网膜下腔出血等。在无目击者CA或CA患者倒地时头部着地的情况下,CT检查可用于排除可能的头部外伤,如脑挫裂伤、硬膜下血肿等。此外,CT结果还可用于鉴别后续治疗可能导致的颅内并发症。例如,体外膜肺氧合(extracorporeal membrane oxygenation, ECMO)辅助下CPR或后续接受冠脉介入治疗患者,常应用大剂量抗血栓形成(抗凝或抗血小板)药物,以及ROSC后序贯目标温度管理(target temperature management, TTM)引起的凝血功能紊乱,均有潜在的颅内出血风险。

头颅CT检查时机不同可导致GWR预后判断的临界值存在差异。研究发现,CA后24 h和48 h内CT评估不良预后的临界值分别为GWR < 1.22和 < 1.18[11]。Streitberger等[12]进一步评价了头颅CT实施不同时机(CA < 6 h、6~24 h及 > 24 h)对预后评估的价值,结果显示CA后 > 24 h CT预测不良预后的敏感度更高,CA后缺血缺氧性脑损伤随着时间的发展,在CT表现上更加显著。目前,CPR后影像学评估神经功能预后的“最佳时机”的相关研究仍较少,尚没有达成一致结论,CT评估时机的选择还需要考虑以下因素:首先,临床医师应根据实际需求和目的选择影像学检查,CT所提示的特异性改变会存在时间延迟或随时间变化而进展,TTM对此可能也存在影响[13]。其次,影像学对预后的判断应与其他评估指标联合,必要时可多次进行,避免过早的影像结果导致结论的不确定或存在偏倚。最后,影像学检查的实施必须以患者血流动力学稳定为前提[10]

3 头颅CT评估相关参数

生理状态下,由于大脑灰质含水量较高而脂肪含量较低(氧浓度升高、碳浓度减低),光电吸收水平增加引起CT影像所示灰质和白质存在密度差异[14]。CA后脑损伤患者头颅CT检查可表现为不同程度的脑水肿和(或)颅内占位效应(颅内压增高)。CA后脑水肿患者可较早出现灰质密度减低,进一步发展累及白质,导致白质密度降低。其原因在于灰质代谢率高、血流丰富及对兴奋性中毒的易感性,使其更易受到缺血缺氧等因素的损害。既往研究主要通过灰质密度减低绝对值、灰白质密度绝对差值及比率等参数指标评价脑水肿的严重程度[15]。其中,“灰白质分界不清”可定性评价灰质和白质之间密度差异减小,而GWR是最常用的定量评价指标。

占位效应的CT征象可表现为脑沟消失征或假性蛛网膜下腔出血(pseudosubarachnoid hemorrhage, p-SAH)。脑沟消失征主要由于脑沟中脑脊液被肿胀的脑组织所取代[16]。p-SAH是因CA后脑组织肿胀和颅内压增高导致的蛛网膜下腔受压变窄、脑脊液被部分取代,脑膜浅表静脉回流受阻并充盈扩张,导致CT显示脑池、脑沟密度相对增高[17]。此外,视神经鞘直径(optic nerve sheath diameter, ONSD)增加也与脑水肿和颅内压增高有关。当颅内压增高时,压力经由蛛网膜下腔中脑脊液传递至视神经周围,因鞘膜本身具有弹性,可见视神经鞘增宽。ONSD可在头颅CT影像中获取并测定,ONSD > 5 mm一般对应颅内压 > 20 cmH2O(1 cmH2O=0.098 kPa)[18]

头颅CT所示相关征象的出现和指标的变化均存在时间相关性[15]。CA后数小时内即可出现灰质密度减低和ONSD增宽。“脑沟消失征”和“灰白质分界不清”最早可在CA后1 h出现,然而大多数患者早期并无特征性表现[19]。p-SAH在CA后数小时至数十天均可出现,常提示神经功能预后不良。

4 头颅CT相关参数对预后评估的价值

有多项研究证实头颅CT提示GWR降低与CA后神经功能不良预后相关[20]。本文总结了23项相关研究[21-43],提示GWR作为单一预测指标判断CA后神经功能不良预后的最佳临界值为1.07~1.23,在特异度为100% 条件下,敏感度差异较大(5.6%~83.8%)。其主要原因在于神经功能不良预后的判断依据、ROSC至CT实施时间、CT图像中感兴趣区的选择及准确性、研究人群特征及选择偏倚、CT扫描技术参数及方案等在各研究之间存在差异[44]。此外,造成最佳临界值存在差异的原因还包括部分研究样本量较小(尤其预后良好组病例数较少)、GWR算法差异、评估者内部一致性不足等[45]。灰白质密度改变等其他征象及p-SAH相关研究详见表 1

表 1 头颅CT相关参数及其神经功能预后评估价值
第一作者,年份 病例数 研究周期 ROSC至CT实施时间 不良预后判断依据 ROI-灰质 ROI-白质 最佳临界值 敏感度(%) 特异度(%)
灰白质比例(GWR)
    Choi[21], 2008 28 2003-2006 < 24 h 出院GOS 1~2 CN, PU IC, CC 1.22 63.0 100.0
    Metter[22], 2011 240 2005-2010 < 1 h 死亡 CN, PU, TH, 大脑皮层 IC, CC, 半卵圆中心 1.20 36.0 98.0
    Wu[23], 2011 151 2000-2007 < 72 h CA后6个月mRS > 4 PU IC N/A 8.0 100.0
    Kim[24], 2013 51 2009-2011 < 1 h 出院CPC 3~5 CN, PU, 内侧皮质 IC, CC, 内侧白质 1.14 13.3 100.0
    Lee B[25], 2013 224 2008-2012 ROSC即刻 出院CPC 3~5 PU CC 1.17 52.9 100.0
    Scheel[26], 2013 98 2005-2011 < 7 d 出院CPC 3~5 PU, TH, 内侧皮质 IC, CC, 内侧白质 1.16 38.0 100.0
    Cristia[27], 2014 77 2008-2012 < 24 h 出院CPC 3~5 N/A N/A 1.10 19.0 100.0
    Hwan[28], 2014 91 2012-2013 < 24 h 出院CPC 3~5 CN, PU IC, CC 1.23 83.8 100.0
    Gentsch[29], 2015 98 2005-2011 < 7 d 出院CPC 3~5 PU IC 1.11 44.3 100.0
    Lee B[30], 2015 283 N/A < 24 h 出院CPC 3~5 PU CC 1.107 5.6 100.0
    Chae[31], 2016 119 2009-2013 < 6 h CA后1个月CPC 3~5 CN, PU, 内侧皮质 IC, CC, 内侧白质 1.13 20.3 100.0
    Hanning[32], 2016 84 2011-2014 < 24 h 出院CPC 3~5 全脑 全脑 1.084 92.7 72.4
    Lee B[33], 2016 164 2007-2012 < 24 h 出院CPC 3~5 PU CC 1.20 43.5 100.0
    Lee Y[34], 2016 30 2009-2014 < 24 h 出院CPC 3~5 内侧皮质 内侧白质 1.22 64.0 100.0
    Jeon[35], 2017 39 2013-2016 < 6 h 出院CPC 3~5 CN, PU, TH CC, IC 1.21 75.8 100.0
    Ryu[36], 2017 42 2005-2015 < 48 h 出院CPC 3~5 CN, PU IC, CC 1.14 34.8 100.0
    Youn[37], 2017 240 2010-2013 < 24 h 出院CPC 3~5 CN, PU, 内侧皮质 IC, CC, 内侧白质 1.077 15.6 100.0
    Scarpino[38], 2018 183 2014-2017 < 24 h CA后6个月CPC 4~5 CN, PU IC, CC 1.21 50.4 100.0
    Wang[39], 2018 58 2011-2015 < 72 h 出院CPC 3~5 CN, PU IC, CC 1.12 28.6 100.0
    Hong[40], 2019 512 2015-2017 < 2 h CA后6个月CPC 3~5 CN, PU, 内侧皮质 IC, CC, 内侧白质 N/A N/A N/A
    Scarpino[41], 2019 346 2016-2018 < 24 h CA后6个月CPC 3~5 CN, PU IC, CC 1.21 48.8 100.0
    You[42], 2019 251 2015-2016 < 24 h CA后6个月CPC 3~5 PU CC N/A N/A N/A
    Son[43], 2020 58 2018-2019 ROSC即刻 CA后3个月CPC 3~5 CN, PU, TH CC, IC 1.07 18.2 100.0
视神经鞘直径(ONSD)
    Hwan[28], 2014 91 2012-2013 < 24 h 出院CPC 3~5 眼球后3 mm处视神经鞘 > 6.21 mm 55.9 100.0
    Chae[31], 2016 119 2009-2013 < 6 h CA后1个月CPC 3~5 眼球后3 mm处视神经鞘 > 7.0 mm 5.5 100.0
    Rush[46], 2016 72 2009-2013 < 48 h 出院CPC 3~5 眼球后3 mm处视神经鞘 无预测价值
    Ryu[36], 2017 42 2005-2015 < 48 h 出院CPC 3~5 眼球后3 mm处视神经鞘 > 6.69 mm 21.7 100.0
    Lee D[47], 2018 329 2015-2016 < 2 h CA后6个月CPC 3~5 眼球后3 mm处视神经鞘 无预测价值
    Wang[48], 2019 95 2015-2018 < 72 h 出院CPC 3~5 眼球后3 mm处视神经鞘 > 5.3 mm 11.8 100.0
其他征象
    Inamasu[19], 2010 75 2006-2008 ROSC即刻 CA后6个月CPC 3~5 基底节水平 灰白质分界不清 81.0 92.0
     半卵圆中心水平 脑沟消失征 32.0 100.0
    Inamasu[49], 2011 39 2005-2009 < 2 h 死亡 基底节水平 灰白质分界不清 100.0 63.0
    Yamamura[50], 2013 58 2007-2010 < 2 h 出院GOS 1~2 大脑皮层, CN, PU皮层下白质, IC, CC GM- WM < 5.5 63.0 100.0
    Lee K[51], 2017 67 2012-2014 < 6 h CA后1个月CPC 3~5 CT评分(ASPECTS-b) ASPECTS-b < 8 100.0 40.4
    Moseby-Knappe [16], 2017 357 2010-2013 CT-1: < 24 h CA后6个月CPC 3~5 全脑 弥漫性脑水肿 1: 14.4 1: 56.5
     CT-2:24 h~7 d 2: 97.6 2: 100
    Lee D[52], 2018 258 2014-2016 < 24 h CA后6个月CPC 3~5 脑室面积、两侧侧脑室前/后角间距离等 Evans指数 < 0.251 69.3 65.9
假性蛛网膜下腔出血(p-SAH)
    Yuzawa[53], 2008 45 2003-2007 N/A 出院mRS 4~6 脑池、脑沟、脑室、脑实质 存在p-SAH 31.0 100.0
    Choi[54], 2013 63 2004-2009 N/A CA后3个月病死率 脑池、脑沟 存在p-SAH N/A N/A
    Lee B[17], 2017 398 2009-2014 < 6 h 出院CPC 3~5 基底池、脑沟、蛛网膜下腔等 存在p-SAH 11.5 100.0
CT灌注成像(CTP)
    Shankar[55], 2018 10 N/A N/A 出院mRS ≥ 5 全脑、脑干 脑干部位CBF与CBV不匹配 37.5 100.0
注:CA为心脏骤停,CBF为脑血流量,CBV为脑血容量,CC为胼胝体,CN为尾状核,CPC为脑功能表现分级,GM为灰质,GOS为格拉斯哥预后评分,IC为内囊,mRS为改良Rankin评分,PU为壳核,ROI为感兴趣区,ROSC为自主循环恢复,TH为丘脑,WM为白质

ONSD可间接反映颅内压水平,颅内压升高与神经功能预后不良具有显著相关性,然而ONSD作为神经功能预后评估指标研究结论并不一致。大部分研究报道ONSD增宽与CPR后颅内压增高及神经功能不良预后具有相关性[31, 36, 48],其预测不良预后的最佳临界值为5.3~7.0 mm。而另有研究结果表明ONSD作为CA后昏迷预后判断指标并不可靠[46-47],因ONSD受个体差异影响较大,如性别、体重指数、种族、眼球大小(横径)等,目前认为ONSD < 5 mm提示视神经鞘无明显增宽、神经功能预后良好[56]。此外,Hwan等[28]研究发现,ONSD联合GWR评估可显著改善对不良预后的判断价值(敏感度92.6%,特异度100%)。

CT灌注成像(CT perfusion, CTP)是基于CT平扫延伸出的脑功能成像技术,采用后处理软件计算脑血容量(CBV)、脑血流量(CBF)、平均通过时间、达峰时间等参数,从而评估脑灌注状态。Shankar等[55]首次报道了CTP用于CA后昏迷患者预后评估,结果显示TTM结束后6 h内CTP提示脑干部位CBF与CBV不匹配预测不良预后的敏感度和特异度分别为37.5% 和100%。与CT平扫相比较,CTP可显著提高评估者内部一致性。

综上所述,头颅CT在CA后昏迷患者病情判断和神经功能预后评估中发挥重要作用,但其预测价值仍需要进一步前瞻性研究验证,并形成统一的评价标准。未来更高级别影像技术的发展和应用,使临床医师能够更加敏锐地观察CA后大脑缺血缺氧性改变,对昏迷患者的神经功能预后评估也能够更加精准。

利益冲突  所有作者声明无利益冲突

参考文献
[1] 蔡文伟, 李恒杰. 全球复苏联盟提高院外心脏骤停生存率的十项举措[J]. 中华急诊医学杂志, 2021, 30(1): 12-14. DOI:10.3760/cma.j.issn.1671-0282.2021.01.005
[2] Geocadin RG, Wijdicks E, Armstrong MJ, et al. Practice guideline summary: Reducing brain injury following cardiopulmonary resuscitation: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology[J]. Neurology, 2017, 88(22): 2141-2149. DOI:10.1212/wnl.0000000000003966
[3] Virani SS, Alonso A, Benjamin EJ, et al. Heart disease and stroke statistics-2020 update: A report from the American Heart Association[J]. Circulation, 2020, 141(9): e139-e596. DOI:10.1161/cir.0000000000000757
[4] Shao F, Li CS, Liang LR, et al. Outcome of out-of-hospital cardiac arrests in Beijing, China[J]. Resuscitation, 2014, 85(11): 1411-1417. DOI:10.1016/j.resuscitation.2014.08.008
[5] Shao F, Li CS, Liang LR, et al. Incidence and outcome of adult in-hospital cardiac arrest in Beijing, China[J]. Resuscitation, 2016, 102: 51-56. DOI:10.1016/j.resuscitation.2016.02.002
[6] Elmer J, Callaway CW. The brain after cardiac arrest[J]. Semin Neurol, 2017, 37(1): 19-24. DOI:10.1055/s-0036-1597833
[7] 王淦楠, 张劲松. 心搏骤停后昏迷患者神经功能预后评估的研究进展[J]. 中华急诊医学杂志, 2016, 14(5): 687-690. DOI:10.3760/cma.j.issn.1671-0282.2016.05.031
[8] Panchal AR, Bartos JA, Cabañas JG, et al. Part 3: Adult basic and advanced life support: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2020, 142(16_suppl_2): S366-S468. DOI:10.1161/cir.0000000000000916
[9] Rafi S, Tadie JM, Gacouin A, et al. Doppler sonography of cerebral blood flow for early prognostication after out-of-hospital cardiac arrest: DOTAC study[J]. Resuscitation, 2019, 141: 188-194. DOI:10.1016/j.resuscitation.2019.05.024
[10] Greer DM, Wu O. Neuroimaging in cardiac arrest prognostication[J]. Semin Neurol, 2017, 37(1): 66-74. DOI:10.1055/s-0036-1594253
[11] Taccone FS, Baar I, De Deyne C, et al. Neuroprognostication after adult cardiac arrest treated with targeted temperature management: Task force for Belgian recommendations[J]. Acta Neurol Belg, 2017, 117(1): 3-15. DOI:10.1007/s13760-017-0755-1
[12] Streitberger KJ, Endisch C, Ploner CJ, et al. Timing of brain computed tomography and accuracy of outcome prediction after cardiac arrest[J]. Resuscitation, 2019, 145: 8-14. DOI:10.1016/j.resuscitation.2019.09.025
[13] Hawkes MA, Rabinstein AA. Neurological prognostication after cardiac arrest in the era of target temperature management[J]. Curr Neurol Neurosci Rep, 2019, 19(2): 10. DOI:10.1007/s11910-019-0922-2
[14] 王淦楠, 陈旭锋, 梅勇, 等. 头颅CT灰质/白质比例对成人心搏骤停后昏迷患者预后的判断价值[J]. 中华急诊医学杂志, 2017, 26(6): 659-663. DOI:10.3760/cma.j.issn.1671-0282.2017.06.012
[15] Keijzer HM, Hoedemaekers CWE, Meijer FJA, et al. Brain imaging in comatose survivors of cardiac arrest: Pathophysiological correlates and prognostic properties[J]. Resuscitation, 2018, 133: 124-136. DOI:10.1016/j.resuscitation.2018.09.012
[16] Moseby-Knappe M, Pellis T, Dragancea I, et al. Head computed tomography for prognostication of poor outcome in comatose patients after cardiac arrest and targeted temperature management[J]. Resuscitation, 2017, 119: 89-94. DOI:10.1016/j.resuscitation.2017.06.027
[17] Lee BK, Kim YJ, Ryoo SM, et al. " Pseudo-subarachnoid hemorrhage sign" on early brain computed tomography in out-of-hospital cardiac arrest survivors receiving targeted temperature management[J]. J Crit Care, 2017, 40: 36-40. DOI:10.1016/j.jcrc.2017.02.021
[18] Kimberly HH, Shah S, Marill K, et al. Correlation of optic nerve sheath diameter with direct measurement of intracranial pressure[J]. Acad Emerg Med, 2008, 15(2): 201-204. DOI:10.1111/j.1553-2712.2007.00031.x
[19] Inamasu J, Miyatake S, Suzuki M, et al. Early CT signs in out-of-hospital cardiac arrest survivors: Temporal profile and prognostic significance[J]. Resuscitation, 2010, 81(5): 534-538. DOI:10.1016/j.resuscitation.2010.01.012
[20] Lopez Soto C, Dragoi L, Heyn CC, et al. Imaging for neuroprognostication after cardiac arrest: Systematic review and meta-analysis[J]. Neurocrit Care, 2020, 32(1): 206-216. DOI:10.1007/s12028-019-00842-0
[21] Choi SP, Park HK, Park KN, et al. The density ratio of grey to white matter on computed tomography as an early predictor of vegetative state or death after cardiac arrest[J]. Emerg Med J, 2008, 25(10): 666-669. DOI:10.1136/emj.2007.053306
[22] Metter RB, Rittenberger JC, Guyette FX, et al. Association between a quantitative CT scan measure of brain edema and outcome after cardiac arrest[J]. Resuscitation, 2011, 82(9): 1180-1185. DOI:10.1016/j.resuscitation.2011.04.001
[23] Wu O, Batista LM, Lima FO, et al. Predicting clinical outcome in comatose cardiac arrest patients using early noncontrast computed tomography[J]. Stroke, 2011, 42(4): 985-992. DOI:10.1161/strokeaha.110.594879
[24] Kim SH, Choi SP, Park KN, et al. Early brain computed tomography findings are associated with outcome in patients treated with therapeutic hypothermia after out-of-hospital cardiac arrest[J]. Scand J Trauma Resusc Emerg Med, 2013, 21: 57. DOI:10.1186/1757-7241-21-57
[25] Lee BK, Jeung KW, Lee HY, et al. Combining brain computed tomography and serum neuron specific enolase improves the prognostic performance compared to either alone in comatose cardiac arrest survivors treated with therapeutic hypothermia[J]. Resuscitation, 2013, 84(10): 1387-1392. DOI:10.1016/j.resuscitation.2013.05.026
[26] Scheel M, Storm C, Gentsch A, et al. The prognostic value of gray-white-matter ratio in cardiac arrest patients treated with hypothermia[J]. Scand J Trauma Resusc Emerg Med, 2013, 21: 23. DOI:10.1186/1757-7241-21-23
[27] Cristia C, Ho ML, Levy S, et al. The association between a quantitative computed tomography (CT) measurement of cerebral edema and outcomes in post-cardiac arrest-a validation study[J]. Resuscitation, 2014, 85(10): 1348-1353. DOI:10.1016/j.resuscitation.2014.05.022
[28] Hwan KY, Ho LJ, Kun HC, et al. Feasibility of optic nerve sheath diameter measured on initial brain computed tomography as an early neurologic outcome predictor after cardiac arrest[J]. Acad Emerg Med, 2014, 21(10): 1121-1128. DOI:10.1111/acem.12477
[29] Gentsch A, Storm C, Leithner C, et al. Outcome prediction in patients after cardiac arrest: a simplified method for determination of gray-white matter ratio in cranial computed tomography[J]. Clin Neuroradiol, 2015, 25(1): 49-54. DOI:10.1007/s00062-013-0281-3
[30] Lee BK, Jeung KW, Song KH, et al. Prognostic values of gray matter to white matter ratios on early brain computed tomography in adult comatose patients after out-of-hospital cardiac arrest of cardiac etiology[J]. Resuscitation, 2015, 96: 46-52. DOI:10.1016/j.resuscitation.2015.07.027
[31] Chae MK, Ko E, Lee JH, et al. Better prognostic value with combined optic nerve sheath diameter and grey-to-white matter ratio on initial brain computed tomography in post-cardiac arrest patients[J]. Resuscitation, 2016, 104: 40-45. DOI:10.1016/j.resuscitation.2016.04.001
[32] Hanning U, Sporns PB, Lebiedz P, et al. Automated assessment of early hypoxic brain edema in non-enhanced CT predicts outcome in patients after cardiac arrest[J]. Resuscitation, 2016, 104: 91-94. DOI:10.1016/j.resuscitation.2016.03.018
[33] Lee BK, Kim WY, Shin J, et al. Prognostic value of gray matter to white matter ratio in hypoxic and non-hypoxic cardiac arrest with non-cardiac etiology[J]. Am J Emerg Med, 2016, 34(8): 1583-1588. DOI:10.1016/j.ajem.2016.05.063
[34] Lee YH, Oh YT, Ahn HC, et al. The prognostic value of the grey-to-white matter ratio in cardiac arrest patients treated with extracorporeal membrane oxygenation[J]. Resuscitation, 2016, 99: 50-55. DOI:10.1016/j.resuscitation.2015.11.009
[35] Jeon CH, Park JS, Lee JH, et al. Comparison of brain computed tomography and diffusion-weighted magnetic resonance imaging to predict early neurologic outcome before target temperature management comatose cardiac arrest survivors[J]. Resuscitation, 2017, 118: 21-26. DOI:10.1016/j.resuscitation.2017.06.021
[36] Ryu JA, Chung CR, Cho YH, et al. The association of findings on brain computed tomography with neurologic outcomes following extracorporeal cardiopulmonary resuscitation[J]. Crit Care, 2017, 21(1): 15. DOI:10.1186/s13054-017-1604-6
[37] Youn CS, Callaway CW, Rittenberger JC, et al. Combination of initial neurologic examination, quantitative brain imaging and electroencephalography to predict outcome after cardiac arrest[J]. Resuscitation, 2017, 110: 120-125. DOI:10.1016/j.resuscitation.2016.10.024
[38] Scarpino M, Lanzo G, Lolli F, et al. Neurophysiological and neuroradiological multimodal approach for early poor outcome prediction after cardiac arrest[J]. Resuscitation, 2018, 129: 114-120. DOI:10.1016/j.resuscitation.2018.04.016
[39] Wang GN, Chen XF, Lv JR, et al. The prognostic value of gray-white matter ratio on brain computed tomography in adult comatose cardiac arrest survivors[J]. J Chin Med Assoc, 2018, 81(7): 599-604. DOI:10.1016/j.jcma.2018.03.003
[40] Hong JY, Lee DH, Oh JH, et al. Grey-white matter ratio measured using early unenhanced brain computed tomography shows no correlation with neurological outcomes in patients undergoing targeted temperature management after cardiac arrest[J]. Resuscitation, 2019, 140: 161-169. DOI:10.1016/j.resuscitation.2019.03.039
[41] Scarpino M, Lolli F, Lanzo G, et al. Neurophysiology and neuroimaging accurately predict poor neurological outcome within 24 hours after cardiac arrest: The ProNeCA prospective multicentre prognostication study[J]. Resuscitation, 2019, 143: 115-123. DOI:10.1016/j.resuscitation.2019.07.032
[42] You YH, Park JS, Yoo IS, et al. Usefulness of a quantitative analysis of the cerebrospinal fluid volume proportion in brain computed tomography for predicting neurological prognosis in cardiac arrest survivors who undergo target temperature management[J]. J Crit Care, 2019, 51: 170-174. DOI:10.1016/j.jcrc.2019.02.024
[43] Son SH, Lee IH, Park JS, et al. Does combining biomarkers and brain images provide improved prognostic predictive performance for out-of-hospital cardiac arrest survivors before target temperature management?[J]. J Clin Med, 2020, 9(3): 744. DOI:10.3390/jcm9030744
[44] Na MK, Kim W, Lim TH, et al. Gray matter to white matter ratio for predicting neurological outcomes in patients treated with target temperature management after cardiac arrest: A systematic review and meta-analysis[J]. Resuscitation, 2018, 132: 21-28. DOI:10.1016/j.resuscitation.2018.08.024
[45] Cronberg T. Assessing brain injury after cardiac arrest, towards a quantitative approach[J]. Curr Opin Crit Care, 2019, 25(3): 211-217. DOI:10.1097/mcc.0000000000000611
[46] Rush B, Wormsbecker A, Berger L, et al. Optic nerve sheath diameter on computed tomography not predictive of neurological status post-cardiac arrest[J]. CJEM, 2017, 19(3): 181-185. DOI:10.1017/cem.2016.348
[47] Lee DH, Lee SH, Oh JH, et al. Optic nerve sheath diameter measured using early unenhanced brain computed tomography shows no correlation with neurological outcomes in patients undergoing targeted temperature management after cardiac arrest[J]. Resuscitation, 2018, 128: 144-150. DOI:10.1016/j.resuscitation.2018.04.041
[48] 王淦楠, 陈科, 陈旭锋, 等. 头颅CT视神经鞘直径测定对成人心搏骤停后昏迷患者预后的判断价值[J]. 临床急诊杂志, 2019, 20(1): 25-29. DOI:10.13201/j.issn.1009-5918.2019.01.004
[49] Inamasu J, Miyatake S, Nakatsukasa M, et al. Loss of gray-white matter discrimination as an early CT sign of brain ischemia/hypoxia in victims of asphyxial cardiac arrest[J]. Emerg Radiol, 2011, 18(4): 295-298. DOI:10.1007/s10140-011-0954-7
[50] Yamamura H, Kaga S, Kaneda K, et al. Head computed tomographic measurement as an early predictor of outcome in hypoxic-ischemic brain damage patients treated with hypothermia therapy[J]. Scand J Trauma Resusc Emerg Med, 2013, 21: 37. DOI:10.1186/1757-7241-21-37
[51] Lee KS, Lee SE, Choi JY, et al. Useful computed tomography score for estimation of early neurologic outcome in post-cardiac arrest patients with therapeutic hypothermia[J]. Circ J, 2017, 81(11): 1628-1635. DOI:10.1253/circj.cj-16-1327
[52] Lee DH, Lee BK, Jeung KW, et al. Relationship between ventricular characteristics on brain computed tomography and 6-month neurologic outcome in cardiac arrest survivors who underwent targeted temperature management[J]. Resuscitation, 2018, 129: 37-42. DOI:10.1016/j.resuscitation.2018.06.008
[53] Yuzawa H, Higano S, Mugikura S, et al. Pseudo-subarachnoid hemorrhage found in patients with postresuscitation encephalopathy: Characteristics of CT findings and clinical importance[J]. AJNR Am J Neuroradiol, 2008, 29(8): 1544-1549. DOI:10.3174/ajnr.A1167
[54] Choi KS, Won YD, Yi HJ, et al. Therapeutic and prognostic implications of subarachnoid hemorrhage in patients who suffered cardiopulmonary arrest and underwent cardiopulmonary resuscitation during an emergency room stay[J]. Clin Neurol Neurosurg, 2013, 115(10): 2088-2093. DOI:10.1016/j.clineuro.2013.07.024
[55] Shankar JJS, Stewart-Perrin B, Quraishi AU, et al. Computed tomography perfusion aids in the prognostication of comatose postcardiac arrest patients[J]. Am J Cardiol, 2018, 121(7): 874-878. DOI:10.1016/j.amjcard.2017.12.027
[56] Lee SH, Jong Yun S. Diagnostic performance of optic nerve sheath diameter for predicting neurologic outcome in post-cardiac arrest patients: A systematic review and meta-analysis[J]. Resuscitation, 2019, 138: 59-67. DOI:10.1016/j.resuscitation.2019.03.004