心脏骤停具有突发性、病死率高、预后差的特征,是我国院前和院内急救最紧急的任务[1]。心肺复苏是针对心脏骤停最为直接有效的抢救措施,随着急救知识的普及,自主循环恢复率(resuscitation of spontaneous circulation, ROSC) 持续提高,可达50%[2]。然而,成功ROSC的患者中仅有10.6%~23.8% 的患者能够存活并出院[3]。复苏后综合征(post-resuscitation syndrome, PRS)是导致ROSC后患者低生存率的主要原因。心肌功能障碍和系统性缺血- 再灌注损伤是引起PRS的主要病理机制[4]。肾脏是人体血管最丰富的器官,是心肺复苏后最易和最早累计的脏器。复苏后急性肾损伤(acute kidney injury,AKI)与系统性缺血- 再灌注密切相关,发病率约为12%~81%,与心肺复苏后患者早期和远期预后密切相关[5-6],因此心肺复苏后AKI情况值得临床关注[7]。
ATP敏感性钾离子(ATP-sensitive potassium, KATP)通道能够调节缺血再灌注损伤[8-9]。肾脏组织中存在丰富KATP通道,一项关于缺血再灌注肾损伤的研究证实,左西孟旦能够激活KATP通道,减轻肾组织氧化应激反应,改善细胞凋亡,缓解缺血再灌注所致的AKI[10]。本团队前期的研究报道,左西孟旦对心肺复苏后AKI具有保护作用,但未阐明具体机制[11]。本研究旨在探索左西孟旦改善心肺复苏后AKI的分子机制,为临床治疗心肺复苏后AKI患者提供理论依据。
1 材料与方法 1.1 试剂与仪器本实验使用试剂包括戊巴比妥(Sigma,美国)、左西孟旦(齐鲁制药,中国)、肌酐和尿素氮检测试剂盒(南京建成,中国)、多炎症因子检测BioPlex(Bio-Rad,美国)、丽春红和酸性品红(上海试剂三厂)、TUNEL检测试剂盒(Promega,美国)、兔抗大鼠GAPDH和磷酸化的细胞外调节蛋白激酶(phosphorylated extracellular regulated protein kinases, p-ERK) 单克隆抗体(Abcam,美国)。
1.2 实验动物及分组成年雄性SD大鼠25只,体重(512.0± 8.8) g,由中山大学孙逸仙纪念医学院唐万春危重症实验室提供。动物生产许可证编号SCXK(粤) 2013- 0034,动物使用许可证编号SYXK(粤) 2017- 0081。本研究中关于动物的处置和操作符合动物实验福利与伦理的基本要求。大鼠适应性饲养1周后用随机数字表法分为实验组(10只)、治疗组(10只) 和对照组(5只)。
1.3 心脏骤停- 心肺复苏模型建立及分组处理3组大鼠实验前12 h禁食、不禁水,称重后置于密封箱,100% CO2诱导麻醉约30 s,待大鼠呈半昏迷状态,予以3% 的戊巴比妥按照45 mg/kg腹腔注射麻醉,术中予以10 mg/(kg · h) 间断静脉麻醉维持。大鼠气管插管连接检测导管检测大鼠呼吸末二氧化碳。右侧股动脉和静脉置管,检测血压及静脉给药通路。肛温表检测体温,二导联心电监护记录心电变化。实验组和治疗组大鼠在诱导窒息前,予以5 min机械通气,呼吸机频率100次/min,氧体积分数21%。采用封堵气管插管的方法,制造窒息环境,同时密切关注监护仪大鼠心率和心电变化,右手轻抚大鼠胸廓,防止过分扭动导致气管呼吸道损伤。当平均动脉压≤ 20 mmHg(1 mmHg=0.133 kPa)时,记作心脏骤停,并再重新计时6 min。在大鼠心脏骤停5 min 30 s时,予以吸痰并行呼吸机通气,通气频率200次/min,氧体积分数100%。心脏骤停6 min时,立即予以胸外按压,于剑突上2.8 cm处进行按压,按压频率200次/min,按压深度1 cm,按压过程维持平均动脉压在(22± 2) mmHg左右。复苏后平均动脉压达到60 mmHg以上持续5 min视为ROSC。持续按压20 min,仍不能恢复自主心律,视为复苏失败。对照组大鼠反置管,记录各项指标,不进行心肺复苏操作。
治疗组大鼠在心脏骤停5 min 30 s时快速静脉注射左西孟旦12 μ g/kg,复苏后予以左西孟旦0.3 μ g/(kg · min) 静脉维持。实验组和对照组在相同时间点注射等剂量生理盐水。
1.4 肾功能及炎症指标检测心肺复苏后6 h股静脉采血,分离血清,利用试剂盒检测血清肌酐(serum creatinine, Scr)和尿素氮(blood urea nitrogen, Bun)水平。同时,采用多炎症因子检测Bio-Plex技术检测血清白介素-1β (interleukin-1β, IL-1β)、白介素-6(interleukin-6, IL-6)和肿瘤坏死因子α(tumor necrosis factor-α, TNF-α)水平。
1.5 肾组织病理检查大鼠心肺复苏后6 h,苯巴比妥腹腔注射麻醉,取左侧肾脏,常规石蜡包埋。制作5 μ m石蜡切片,HE染色。100倍光镜下观察各组大鼠肾组织病理改变,并进行Paller评分[12]。评分标准如下:肾小管明显扩张计1分;细胞扁平或肿胀计1分;刷状缘损伤计1分;脱落计2分;管型计2分;肾小管管腔内有脱落、坏死(未形成管型或细胞碎屑)计1分;肾小管正常计0分。每个视野下随机取10个肾小管评分,并根据评分结果,评价损伤程度。
1.6 TUNEL染色检测凋亡取右侧肾脏纵切后将一半肾脏在OCT化合物中冰冻,4 μ m切片,切片用4% 多聚甲醛固定,按照TUNEL检测试剂盒的说明书进行操作操作。荧光显微镜记录荧光图像,与细胞核可重合的绿色荧光亮点即为凋亡细胞。运用图像分析软件Image J进行凋亡统计。每张切片随机选取10个不同视野(400倍镜下),计数每100个细胞中凋亡细胞的数量,最后对每组结果取平均值计算凋亡细胞百分比。
1.7 Western印迹提取肾脏组织蛋白,根据目的蛋白相对分子量大小制备所需浓度的SDS-PAGE胶。各组蛋白上样后行SDS-PAGE电泳后转至PVDF膜。封闭1 h后分别与兔抗大鼠GAPDH和p-ERK抗体(稀释度1 ∶ 1 000)结合,洗膜后再结合辣根过氧化物酶标记的羊抗兔二抗(1 ∶ 5 000 TBST稀释),ECL发光显影试剂反应后,采用Western印迹自动成像仪扫描并获得显影图像。采用Image J软件对蛋白的灰度值进行分析。
1.8 统计学方法采用GraphPad Prism 7.0软件进行统计学分析。对计量资料先进行正态性检验,符合正态分布的计量资料采用均数±标准差(x±s)表示,多组间均数比较采用单因素方差分析,多组间两两比较采用LSD-t检验,以P < 0.05为差异有统计学意义。
2 结果 2.1 左西孟旦能够改善心肺复苏后大鼠肾功能实验组有10只大鼠复苏成功,治疗组有9只大鼠复苏成功。与对照组比较,实验组大鼠心肺复苏后6 h Scr和Bun水平明显升高(均P < 0.01),提示大鼠心肺复苏后出现AKI;与实验组相比,治疗组Scr和Bun水平下降(均P < 0.01),提示左西孟旦能够改善心肺复苏后大鼠肾功能(表 1)。
组别 | 只数 | Scr (μ mol/L) | Bun(mmol/L) |
对照组 | 5 | 15.94 ±0.96 | 2.95 ±0.18 |
实验组 | 10 | 85.02 ± 1.31a | 7.36±0.13a |
治疗组 | 9 | 63.88 ±2.01ab | 5.45 ±0.47ab |
F值 | 609.10 | 67.99 | |
P值 | < 0.01 | < 0.01 | |
注:与对照组比较,aP < 0.01;与实验组比较,bP < 0.01 |
HE染色结果显示,与对照组比较,实验组肾小管结构破坏,管腔内管状缘、刷状缘脱离,大量管型形成。与实验组比较,左西孟旦治疗组肾小管轻度扩张,小管结构较完整(图 1)。Paller评分结果显示,对照组Paller评分为(0.7± 0.2)分,实验组为(7.3± 0.2)分,治疗组为(4.8± 0.2)分。
![]() |
图 1 各组大鼠肾组织病理改变的比较(HE染色,× 100) Fig 1 Comparison of renal histopathological changes in each group (HE staining, × 100) |
|
与对照组相比,实验组大鼠血清IL-1β、IL-6和TNF-α水平明显升高(P < 0.01);左西孟旦干预后,治疗组炎症指标较实验组下降(P < 0.01)(表 2)。
组别 | 只数 | IL-1β | IL-6 | TNF-α |
对照组 | 5 | 7.27 ±0.44 | 51.30 ±2.87 | 10.39 ±0.52 |
实验组 | 10 | 302.20 ± 17.35a | 564.60 ±23.24a | 1 346.0 ± 83.73a |
治疗组 | 9 | 78.61 ±3.66ab | 297.90 ± 13.64 ab | 276.2 ±20.18ab |
F值 | 225.70 | 269.20 | 202.10 | |
P值 | < 0.01 | < 0.01 | < 0.01 | |
注:与对照组比较,aP < 0.01;与实验组比较,bP < 0.01 |
TUNEL染色结果显示,对照组大鼠肾组织未见绿色荧光颗粒,实验组大鼠肾组织绿色荧光点明显增多,左西孟旦治疗组大鼠肾组织绿色荧光点减少。实验组凋亡细胞百分比(30%)显著增高对照组(3%)(P < 0.01); 与实验组比较,治疗组凋亡细胞百分比(14%)下降(P < 0.01)(图 2)。
![]() |
图 2 各组大鼠肾组织凋亡情况(TUNEL染色,× 400) Fig 2 The apoptosis of kidney tissues in each group (TUNEL staining, × 400) |
|
Western印迹结果显示,与对照组比较,实验组肾组织p-ERK表达下降(P < 0.01),左西孟旦干预后,p-ERK表达增加(P < 0.01,与实验组比较)(图 3)。
![]() |
注:与对照组比较,aP<0.01;与实验组比较,bP<0.01 图 3 各组大鼠肾组织p-ERK表达的比较(Western印迹) Fig 3 Comparison of the expression of p-ERK protein in kidney tissues in each group (Western blot) |
|
全身系统性缺血再灌注损伤是心脏骤停存活患者高病死率的主要病理因素,尤其是缺血- 再灌注引起的脑损伤是患者死亡和功能障碍的主要原因[13]。现有的研究更多关注心肺复苏后心脏和脑损伤,对肾脏损伤的关注较少。近年来,不少研究报道AKI是心脏骤停后常见并发症,发病率约为12%~81%[5-6]。一项Meta分析结果显示,超过50% 的心脏骤停成功复苏患者2 d内发生AKI [14]。本研究显示,窒息法诱导的心脏骤停能够引起大鼠发生AKI;肾组织病理提示心脏骤停主要引起肾小管损伤,符合缺血再灌注损伤表现。AKI是重症患者死亡的独立危险因素,AKI不仅增加心肺复苏成功患者病死率,而且加大医疗资源消耗压力[15]。因此,心肺复苏后急性肾损伤值得进一步关注。
KATP通道已被证实为一种保护性效应器,参与缺血再灌注损伤的调节KATP主要分两类,一类为位于肌膜的KATP(sarcolemmal KATP, sarcKATP)通道,另一类位于线粒体内膜的KATP (mitochondrial KATP, mitoKATP)通道[16]。左西孟旦是一种非选择性KATP通道激活剂。目前,已有两项针对随机对照研究的Meta分析报道,左西孟旦不仅能够改善心脏手术后AKI[17],而且能够使重症AKI患者获益[18]。一项多中心随机对照双盲临床研究报道,左西孟旦能够预防慢性肾脏病患者接受二尖瓣置换术后AKI的发生[19]。本实验发现,左西孟旦能够改善心肺复苏后大鼠肾功能,并减轻心脏骤停后大鼠肾组织损伤,进一步验证了左西孟旦的肾脏保护作用。
左西孟旦能够通过改善全身血流动力学(增加心输出量和减少中心静脉压)和肾脏血流动力学(扩张入球小动脉)间接发挥肾脏保护作用,也能够通过抗炎和抗凋亡直接发挥肾脏保护作用[20-21]。体外实验已经证实,左西孟旦能够抑制促炎因子(IL-1β和IL-6)表达[22]。另有研究表明,左西孟旦还通过抑制活性氧表达发挥抗炎作用[23]。一项关于人肝细胞缺氧复氧的研究提示,左西孟旦通过调节Bax/ Bcl-2蛋白发挥抗凋亡作用[24]。在缺血- 再灌注肺损伤的研究中也报道,左西孟旦能够改善肺组织细胞凋亡[25]。本实验发现左西孟旦能够降低心肺复苏后大鼠血清中IL-1β和IL-6表达,并且改善大鼠肾组织细胞凋亡,与以上研究结果一致。
ERK是经典的丝裂原活化蛋白激酶(mitogenactivated protein kinases, MAPK)通路,参与调节细胞许多基本的生理活动,包括基因表达、细胞周期调控、细胞运动、炎症应激及细胞凋亡等[26]。Zou等[27]的研究报道,促红素能够激活ERK信号通路改善肾脏缺血- 再灌注损伤。一项围绕人HK-2细胞缺氧复氧的研究提出,ERK信号通路激活参与炎症反应和细胞凋亡[28]。本实验显示,大鼠心肺复苏后AKI过程p-ERK表达下降,而左西孟旦治疗后p-ERK表达增加,提示左西孟旦可能通过激活ERK信号通路改善心肺复苏后肾脏损伤。近期的一项关于心肌细胞的研究报道,KATP通道开放能够活化p-ERK信号通路[29]。因此,笔者推测左西孟旦可能通过激活ERK信号通路改善大鼠心肺复苏后AKI。
综上所述,本研究显示大鼠心肺复苏后可有AKI发生,左西孟旦能够改善心肺复苏后大鼠肾功能和肾脏组织损伤,降低血清促炎因子表达,减少肾组织细胞凋亡,其机制可能与活化ERK信号通路有关,为心肺复苏后AKI的防治提供一定理论基础。
利益冲突 所有作者声明无利益冲突
作者贡献声明 赵立、王世伟、贾天元:动物造模;赵立、贾天元、杨伟强:分子生物学实验;杨伟强、杨倩:数据分析;田磊、赵立:论著书写;朱长清、田磊、陆晓晔:实验设计和指导
[1] | Myat A, Song KJ, Rea T. Out-of-hospital cardiac arrest: Current concepts[J]. Lancet, 2018, 391(10124): 970-979. DOI:10.1016/S0140-6736(18)30472-0 |
[2] | van Nieuwenhuizen BP, Oving I, Kunst AE, et al. Socio-economic differences in incidence, bystander cardiopulmonary resuscitation and survival from out-of-hospital cardiac arrest: A systematic review[J]. Resuscitation, 2019, 141: 44-62. DOI:10.1016/j.resuscitation.2019.05.018 |
[3] | Benjamin EJ, Virani SS, Callaway CW, et al. Heart disease and stroke statistics—2018 update: A report from the American heart association[J]. Circulation, 2018, 137(12): 467-492. DOI:10.1161/cir.0000000000000558 |
[4] | Adrie C, Laurent I, Monchi M, et al. Postresuscitation disease after cardiac arrest: A Sepsis-like syndrome?[J]. Curr Opin Crit Care, 2004, 10(3): 208-212. DOI:10.1097/01.ccx.0000126090.06275.fe |
[5] | Tujjar O, Mineo G, Dell' Anna A, et al. Acute kidney injury after cardiac arrest[J]. Crit Care (Lond Engl), 2015, 19: 169. DOI:10.1186/s13054-015-0900-2 |
[6] | Rundgren M, Ullén S, Morgan MPG, et al. Renal function after outof-hospital cardiac arrest; the influence of temperature management· 60· and coronary angiography, a post hoc study of the target temperature management trial[J]. Crit Care (Lond Engl), 2019, 23(1): 163. DOI:10.1186/s13054-019-2390-0 |
[7] | 金晓红, 徐杰丰, 张茂. 心脏骤停复苏后急性肾损伤的研究进展[J]. 中国急救医学, 2019, 39(7): 704-709. DOI:10.3969/j.issn.1002-1949.2019.07.019 |
[8] | 郭建, 陆晓晔, 杨倩, 等. ATP敏感的钾通道相关研究进展[J]. 临床急诊杂志, 2018, 19(1): 66-69. DOI:10.13201/j.issn.1009-5918.2018.01.017 |
[9] | Pertiwi KR, Hillman RM, Scott CA, et al. Ischemia reperfusion injury produces, and ischemic preconditioning prevents, rat cardiac fibroblast differentiation: role of KATP channels[J]. J Cardiovasc Dev Dis, 2019, 6(2): E22. DOI:10.3390/jcdd6020022 |
[10] | Grossini E, Molinari C, Pollesello P, et al. Levosimendan protection against kidney ischemia/reperfusion injuries in anesthetized pigs[J]. J Pharmacol Exp Ther, 2012, 342(2): 376-388. DOI:10.1124/jpet.112.193961 |
[11] | 王世伟, 郭建, 杨正飞, 等. 左西孟旦对心搏骤停- 心肺复苏后大鼠肾损伤的影响[J]. 上海交通大学学报(医学版), 2019, 39(12): 1360-1365. DOI:10.3969/j.issn.1674-8115.2019.12.004 |
[12] | Yurdakul T, Kulaksizoglu H, Pişkin MM, et al. Combination antioxidant effect of α -tocoferol and erdosteine in ischemia– reperfusion injury in rat model[J]. Int Urol Nephrol, 2010, 42(3): 647-655. DOI:10.1007/s11255-009-9641-y |
[13] | Sandroni C, Cariou A, Cavallaro F, et al. Prognostication in comatose survivors of cardiac arrest: An advisory statement from the European Resuscitation Council and the European Society of Intensive Care Medicine[J]. Resuscitation, 2014, 85(12): 1779-1789. DOI:10.1016/j.resuscitation.2014.08.011 |
[14] | Sandroni C, Dell' anna AM, Tujjar O, et al. Acute kidney injury after cardiac arrest: A systematic review and meta-analysis of clinical studies[J]. Minerva Anestesiol, 2016, 82(9): 989-999. |
[15] | Roman-Pognuz E, Elmer J, Rittenberger JC, et al. Markers of cardiogenic shock predict persistent acute kidney injury after out of hospital cardiac arrest[J]. Heart Lung, 2019, 48(2): 126-130. DOI:10.1016/j.hrtlng.2018.10.025 |
[16] | Ye P, Zhu YR, Gu Y, et al. Functional protection against cardiac diseases depends on ATP-sensitive potassium channels[J]. J Cell Mol Med, 2018, 22(12): 5801-5806. DOI:10.1111/jcmm.13893 |
[17] | Zhou CH, Gong JS, Chen D, et al. Levosimendan for prevention of acute kidney injury after cardiac surgery: A meta-analysis of randomized controlled trials[J]. Am J Kidney Dis, 2016, 67(3): 408-416. DOI:10.1053/j.ajkd.2015.09.015 |
[18] | Bove T, Matteazzi A, Belletti A, et al. Beneficial impact of levosimendan in critically ill patients with or at risk for acute renal failure: A meta-analysis of randomized clinical trials[J]. Heart Lung Vessel, 2015, 7(1): 35-46. |
[19] | Zangrillo A, Alvaro G, Belletti A, et al. Effect of levosimendan on renal outcome in cardiac surgery patients with chronic kidney disease and perioperative cardiovascular dysfunction: A substudy of a multicenter randomized trial[J]. J Cardiothorac Vasc Anesth, 2018, 32(5): 2152-2159. DOI:10.1053/j.jvca.2018.02.039 |
[20] | Yilmaz MB, Grossini E, Silva Cardoso JC, et al. Renal effects of levosimendan: A consensus report[J]. Cardiovasc Drugs Ther, 2013, 27(6): 581-590. DOI:10.1007/s10557-013-6485-6 |
[21] | Farmakis D, Alvarez J, Gal TB, et al. Levosimendan beyond inotropy and acute heart failure: Evidence of pleiotropic effects on the heart and other organs: an expert panel position paper[J]. Int J Cardiol, 2016, 222: 303-312. DOI:10.1016/j.ijcard.2016.07.202 |
[22] | Krychtiuk KA, Watzke L, Kaun C, et al. Levosimendan exerts antiinflammatory effects on cardiac myocytes and endothelial cells in vitro[J]. Thromb Haemost, 2015, 113(2): 350-362. DOI:10.1160/TH14-06-0549 |
[23] | Hasslacher J, Bijuklic K, Bertocchi C, et al. Levosimendan inhibits release of reactive oxygen species in polymorphonuclear leukocytes in vitro and in patients with acute heart failure and septic shock: A prospective observational study[J]. Crit Care, 2011, 15(4): R166. DOI:10.1186/cc10307 |
[24] | Brunner SN, Bogert NV, Schnitzbauer AA, et al. Levosimendan protects human hepatocytes from ischemia-reperfusion injury[J]. PLoS One, 2017, 12(11): e0187839. DOI:10.1371/journal.pone.0187839 |
[25] | Zhang CX, Guo ZX, Liu HY, et al. Influence of levosimendan postconditioning on apoptosis of rat lung cells in a model of ischemia-reperfusion injury[J]. PLoS One, 2015, 10(1): e0114963. DOI:10.1371/journal.pone.0114963 |
[26] | Kurtzeborn K, Kwon HN, Kuure S. MAPK/ERK Signaling in regulation of renal differentiation[J]. Int J Mol Sci, 2019, 20(7): 1779. DOI:10.3390/ijms20071779 |
[27] | Zou YR, Zhang J, Wang J, et al. Erythropoietin receptor activation protects the kidney from ischemia/reperfusion-induced apoptosis by activating ERK/p53 signal pathway[J]. Transplant Proc, 2016, 48(1): 217-221. DOI:10.1016/j.transproceed.2016.01.009 |
[28] | Dong Q, Jie YX, Ma J, et al. Renal tubular cell death and inflammation response are regulated by the MAPK-ERK-CREB signaling pathway under hypoxia-reoxygenation injury[J]. J Recept Signal Transduct, 2019, 39(5/6): 383-391. DOI:10.1080/10799893.2019.1698050 |
[29] | Gavali JT, Carrillo ED, García MC, et al. The mitochondrial K-ATP channel opener diazoxide upregulates STIM1 and Orai1 via ROS and the MAPK pathway in adult rat cardiomyocytes[J]. Cell Biosci, 2020, 10: 96. DOI:10.1186/s13578-020-00460-w |