中华急诊医学杂志  2021, Vol. 30 Issue (11): 1334-1339   DOI: 10.3760/cma.j.issn.1671-0282.2021.11.010
肺部超声在体外膜肺氧合挽救儿童急性呼吸窘迫综合征中的价值
王斐1 , 周益平1 , 史婧奕1 , 单怡俊1 , 王春霞1,2 , 张育才1,2     
1. 上海交通大学附属儿童医院重症医学科 200062;
2. 上海交通大学儿科危重病研究所 200062
摘要: 目的 评价肺部超声在体外膜肺氧合(extracorporeal membrane oxygenation,ECMO)治疗重度急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS)患儿肺部病情评估中的价值。方法 采用前瞻性研究的方法,纳入2016年1月至2019年12月期间在上海交通大学附属儿童医院重症医学科符合柏林标准的重度ARDS患儿,排除ECMO治疗时间 < 3 d、缺乏合适声窗、严重气胸及继发于先天性心脏病或慢性肺部疾病的患儿。采用肺部超声评估ECMO挽救患儿的肺部病变资料,包括ECMO启动时、ECMO治疗后24 h、48 h、72 h、第7天及撤机时动态肺部超声评分(lung ultrasound score,LUS),分别记录为LUS-0 h、LUS-24 h、LUS-48 h、LUS-72 h,LUS-7 d,LUS-w。根据出院时生存状态分为死亡组及存活组,采用受试者工作特征(receiver operating characteristic,ROC)曲线及Kaplan-Meier生存分析曲线分析LUS与预后的关系。结果 研究共纳入26例患儿,其中18例存活,8例死亡。ECMO启动时,第三代小儿死亡危险评分、肺动态顺应性(pulmonary dynamic compliance,Cdyn)、氧合指数、动脉血氧分压/吸入氧体积分数、二氧化碳分压等两组之间均差异无统计学意义(P > 0.05)。死亡组LUS-72 h和LUS-w明显高于存活组[26(24,29)vs 16(13,19),P < 0.01]和[30(26,35)vs 11(10,13),P < 0.01]。存活组Cdyn-72 h、Cdyn-7 d和Cdyn-w明显高于死亡组[0.48(0.42,0.54)mL/cmH2O·kg vs 0.36(0.29,0.40)mL/cmH2O·kg,P < 0.01]、[0.60(0.52,0.67)mL/cmH2O·kg vs 0.27(0.13,0.30)mL/cmH2O·kg,P < 0.01;0.66(0.62,0.70)mL/cmH2O·kg vs 0.30(0.13,0.35)mL/cmH2O·kg,P < 0.01]。ROC曲线分析显示LUS-72 h预测患儿生存状态的AUC为0.955(95%CI:0.864~1.000, P < 0.01);截断值为24时灵敏度为87.5%,特异度为100.0%。以LUS-72 h≥24和LUS-72 h < 24分组进行Kaplan-Meier生存分析:LUS-72 h≥24组病死率显著高于LUS-72 h < 24组(P < 0.01)。结论 肺部超声LUS测定对ECMO挽救ARDS患儿病情和预后判断具有参考价值。
关键词: 肺部超声评分    体外膜肺氧合    急性呼吸窘迫综合征    儿童    
The value of lung ultrasound in children with severe acute respiratory distress syndrome undergoing extracorporeal membrane oxygenation
Wang Fei1 , Zhou Yiping1 , Shi Jingyi1 , Shan Yijun1 , Wang Chunxia1,2 , Zhang Yucai1,2     
1. Department of Critical Care Medicine, Children's Hospital of Shanghai Jiao Tong University, Shanghai 200062, China;
2. Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai 200062, China
Abstract: Objective To evaluate the predictive value of lung ultrasound on mortality in children with severe acute respiratory distress syndrome (ARDS) undergoing extracorporeal membrane oxygenation (ECMO) support. Methods A prospective observational study was used to enroll patients with severe ARDS who met the Berlin criteria in the Pediatric Intensive Care Unit of Children's Hospital of Shanghai Jiao Tong University from January 2016 to December 2019. Patients with ECMO support < 3 d, lack of appropriate acoustic windows, with severe pneumothorax, and secondary to congenital heart disease or chronic lung disease were excluded. ECMO parameters, respiratory mechanics parameters and outcome were collected and analyzed. Lung ultrasound score (LUS) was measured at the initiation of ECMO as LUS-0 h, then at 24 h, 48 h, 72 h, and 7 d after ECMO support as the value of LUS-24 h, LUS-48 h, LUS-72 h, LUS-7 d, as well as after weaning ECMO as LUS-w. The patients were divided into survivors and non-survivors according to hospital survival status. Receiver operating characteristic (ROC) curve and Kaplan-Meier survival analysis curve were performed to explore the predictive value of lung ultrasound on mortality in patients with severe ARDS undergoing ECMO. Results A total of 26 patients were enrolled in this study, of which 18 patients survived and 8 died. There were no significant differences in PRISM Ⅲ, dynamic pulmonary compliance (Cdyn), oxygenation index, PaO2/FiO2, and PaCO2 on PICU admission between the two groups (all P > 0.05). The values of LUS-72 h and LUS-w in non-survivors were significantly higher than those in survivors [26 (24, 29) vs16 (13, 19), P < 0.01] and [30 (26, 35) vs11 (10, 13), P < 0.01]. The values of Cdyn-72 h, Cdyn-7 d and Cdyn-w in survivors were significantly higher than those in non-survivors [0.48 (0.42, 0.54)mL/cmH2O·kg vs 0.36(0.29, 0.40) mL/cmH2O·kg, P < 0.01; 0.60 (0.52, 0.67) mL/cmH2O·kg vs 0.27 (0.13, 0.30) mL/cmH2O·kg, P < 0.01, and 0.66 (0.62, 0.70) mL/cmH2O·kg vs 0.30 (0.13, 0.35) mL/cmH2O·kg, P < 0.01]. ROC curve analysis showed that an area under ROC curve (AUC) of LUS-72 h for predicting PICU mortality was 0.955 (95% CI: 0.864-1.000; P < 0.01). The cutoff value of LUS-72 h was 24 with a sensitivity of 87.5% and a specificity of 100.0%. Kaplan-Meier survival analysis showed that PICU mortality of patients with LUS-72 h≥24 was significantly higher than that in patients with LUS-72 h < 24 (P < 0.01). Conclusions Lung ultrasound is an effective tool for monitoring progress of children with severe ARDS received ECMO support. LUS-72 h > 24 is an index to predict the worsen outcome in children with severe ARDS under ECMO support.
Key words: Lung ultrasound score    Extracorporeal membrane oxygenation    Acute respiratory distress syndrome    Children    

急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS)是两肺弥漫性炎性渗出、血管外肺水含量(extravascular lung water,EVLW)增加、肺顺应性下降及肺通气减少为病理生理特征的危重症[1]。一项涉及50个国家的459个重症监护病房的LUNG-SAFE研究报告,ARDS的住院病死率高达35%~46%[2]。2015年儿童急性肺损伤国际会议推荐重度ARDS患儿在机械通气无法维持气体交换时可以采用ECMO挽救[3]。传统病情评估手段如肺部影像学(X线或CT扫描)、氧合指数(oxygenation index,OI)、动脉血氧分压/吸入氧体积分数(PaO2/FiO2)等在ECMO治疗过程中实施存在困难。目前超声已被广泛应用于急危重症病情评估[4]。最新研究发现肺部超声评分(lung ultrasound score,LUS)可精确评估ARDS肺部病变的严重度[5-6],但床旁LUS对ARDS患儿在ECMO治疗过程中病情及预后评估较少报道[7]。本文纳入2016年1月至2019年12月上海交通大学附属儿童医院重症医学科(pediatric intensive care unit, PICU)收治的26例ECMO挽救的重度ARDS患儿,前瞻性探讨LUS分值与病情及预后的关系,报道如下。

1 资料与方法 1.1 研究对象

本研究为前瞻性研究,纳入2016年1月至2019年12月在上海交通大学附属儿童医院PICU收治的患重度ARDS、经肺保护性通气策略等治疗病情继续加重而使用ECMO救治、并采用LUS监测肺部病变的患儿。

1.1.1 纳入标准

符合柏林标准[8]诊断的重度ARDS,经肺保护性通气治疗、保守液体管理、神经肌肉接头阻滞剂和俯卧位等综合治疗,仍不能维持合适的正常氧合水平。参考国际体外生命支持组织儿童ECMO呼吸支持指南建议[9],进行ECMO挽救治疗。

1.1.2 排除标准

(1)ECMO治疗时间 < 3 d;(2)因胸部外伤、或过分肥胖等缺乏合适声窗的患者;(3)存在气胸;(4)继发于先天性心血管疾病或慢性肺部疾病的患者。

研究经医院伦理委员会批准(2016R011-E02),所有检查均取得家属知情同意。

1.2 肺部超声评估方法

患者取仰卧位、侧卧及俯卧位,由腋前线及腋后线将胸壁划分为前、侧及后三个区域,每个区域分为上和下两部分,用13-6 MHz线阵探头(M-Turbo便携式彩色超声, Mini-Dock-M Series, 美国索诺声公司)垂直于胸壁表面对12个区域依次进行纵向扫描[10-11]。所有肺部超声检查及视频资料, 均由两名经过专业培训的PICU医师完成。

对12个区域依次进行评分,每个区域以最严重的表现进行评分,分值0~3分,所得的LUS评分为每个区域评分总和,分值0~36分。超声评分定义[12]:(1)正常通气(0分),肺滑动征伴A线或少于2个单独的B线;(2)中度肺通气减少区(1分),多发、典型B线(B1线);(3)重度肺通气减少区(2分),多发融合的B线(B2线);(4)肺实变区(3分),组织影像伴典型的支气管充气征。

1.3 观察指标

一般临床资料包括年龄、性别、身体质量指数(body mass index, BMI)、第三代小儿死亡危险评分(PRISM Ⅲ)、ECMO参数、肺动态顺应性(pulmonary dynamic compliance,Cdyn)、肺功能情况(包括PaO2/FiO2、OI和PaCO2)、ECMO和机械通气时间、PICU住院时间等。开始ECMO治疗时行肺部LUS为LUS-0 h,ECMO治疗后24 h、48 h、72 h、第7 d及撤机时,分别为LUS-24 h、LUS-48 h、LUS-72 h、LUS-7 d及LUS-w。

1.4 统计学方法

采用SPSS 17.0软件进行统计学分析。计数资料采用频数和百分率表示,应用卡方检验进行两组间差异比较;偏态分布计量资料以中位数(四分位数)[MQLQU)]表示,应用Mann-Whitney U检验进行两组间差异分析。采用受试者工作曲线特征(receiver operating characteristic,ROC)曲线及Kaplan-Meier生存曲线分析各指标与PICU病死率之间的关系。以P < 0.05为差异有统计学意义。

2 结果 2.1 一般资料

表 1所示,同期PICU采用ECMO挽救重度ARDS患儿40例。其中14例未纳入研究为:ECMO挽救 < 3 d撤离1例,合并胸部外伤缺乏合适超声窗2例,合并严重气漏5例,合并先天性心血管疾病4例,合并慢性肺疾病1例,过分肥胖1例。最终纳入研究26例。根据出院时生存状态,分为存活组(18例)及死亡组(8例),住院存活率69.2%。存活组与死亡组在年龄、BMI、ECMO启动时的PRISM Ⅲ评分、PaO2/FiO2、OI、PaCO2、Cdyn等差异无统计学意义(均P > 0.05)。

表 1 26例重度ARDS患儿ECMO启动时存活组与死亡组基本临床资料 Table 1 Basic clinical data of 26 children with severe ARDS at initial ECMO support
指标 存活组(n=18) 死亡组(n=8) Z/χ2 P
年龄(月)a 37(10,59) 15(6,96) -0.028 0.978
男性(例,%) 7(38.9) 5(62.5) 1.242 0.265
BMI a 14.0(13.1,16.9) 15.2(14.0,17.7) -1.000 0.317
PRISM Ⅲ a 19(13,22) 23(12,37) -1.005 0.315
ARDS原因(例,%)
  重症肺炎 13(72.2) 8(100.0) 2.751 0.097
  脓毒症 5(27.8) 0(0.0) 2.751 0.097
并发症(例,%)
  休克 13(72.2) 8(100.0) 2.751 0.097
  急性肾损伤 14(77.8) 6(75.0) 0.024 0.877
  胃肠障碍 12(66.7) 8(100.0) 3.467 0.063
  肝功能障碍 10(55.6) 6(75.0) 0.885 0.347
  凝血功能障碍 10(55.6) 6(75.0) 0.885 0.347
呼吸力学指标
  PaO2/FiO2(mmHg)a 63.0(53.8,72.5) 50.4(46.0,66.0) -1.642 0.101
  OI a 28.0(20.0,39.0) 42.0(30.0,60.0) -1.747 0.081
  PaCO2(mmHg)a 52.5(46.5,62.5) 57.0(30.8,76.5) -0.376 0.707
  Cdyn(mL/cmH2O·kg)a 0.40(0.35,0.40) 0.35(0.31,0.37) -1.919 0.055
ECMO模式
  V-A模式(例,%) 12(66.7) 7(87.5) 1.222 0.269
  V-V模式(例,%) 6(33.3) 1(12.5) 1.222 0.269
  ECMO时间(h)a 166(122,265) 121(76,422) -0.612 0.541
  机械通气时间(h)a 328(165,504) 194(87,719) -1.056 0.291
注:ARDS为急性呼吸窘迫综合征;BMI为身体质量指数;PRISM Ⅲ为第三代儿童死亡危险评分;MODS为多器官功能障碍综合征;PaO2/FiO2为动脉氧分压/吸入氧体积分数;OI为氧合指数;PaCO2为二氧化碳分压;Cdyn为动态肺顺应性;CRRT为持续血液净化治疗;ECMO为体外膜肺;aMQLQU
2.2 存活组与死亡组LUS、ECMO参数、肺力学比较

存活组LUS-72 h、LUS-w明显低于死亡组;在治疗72 h后存活组ECMO血流量需求显著低于死亡组;治疗72 h、7 d及撤ECMO时存活组患儿Cdyn较死亡组明显改善,差异有统计学意义(均P < 0.05)。两组LUS-0 h、LUS-24 h、LUS-48 h、ECMO血流-0 h、ECMO血流-24 h、ECMO血流-48 h、Cdyn-0 h、Cdyn-24 h、Cdyn-48 h及ECMO气流比较均差异无统计学意义(均P > 0.05),见表 2

表 2 存活组与死亡组LUS与ECMO参数、Cdyn比较[MQLQU)] Table 2 Comparison of LUS, ECMO parameters and Cdyn between survivors and non-survivors [M(QL, QU)]
项目 存活组 死亡组 Z P
数值 例数 数值 例数
LUS-0 h 18(16,22) 18 21(18,24) 8 -1.398 0.162
LUS-24 h 22(20,27) 18 24(22,28) 8 -0.780 0.435
LUS-48 h 20(17,24) 18 22(18,27) 8 -1.261 0.207
LUS-72 h 16(13,19) 18 26(24,29) 8 -3.647 <0.01
LUS-7 d 14(12,15) 9 - 3 - -
LUS-w 11(10,13) 18 30(26,35) 8 -4.026 <0.01
ECMO血流(mL/kg·min)
ECMO-0 h 84(72,90) 18 85(73,110) 7 -0.364 0.716
ECMO-24 h 73(64,87) 18 90(55,105) 7 -0.969 0.333
ECMO-48 h 79(60,89) 18 102(42,133) 7 -1.090 0.276
ECMO-72 h 60(44,82) 18 88(74,120) 7 -2.362 0.018
ECMO-7 d 55(35,65) 9 - 3 - -
ECMO气流(L/min)
ECMO-0 h 2.00(1.20,2.13) 18 2.00(1.00,3.50) 7 -0.031 0.975
ECMO-24 h 1.50(1.00,2.00) 18 1.80(1.20,3.50) 7 -1.037 0.300
ECMO-48 h 1.65(1.00,2.03) 18 1.50(1.00,3.50) 7 -0.640 0.522
ECMO-72 h 1.50(1.00,2.03) 18 1.50(0.70,4.00) 7 -0.517 0.605
ECMO-7 d 1.50(0.65,2.00) 9 - 3 - -
Cdyn(mL/cmH2O·kg)
Cdyn-0 h 0.40(0.35,0.40) 18 0.35(0.31,0.37) 8 -1.919 0.055
Cdyn-24 h 0.34(0.32,0.40) 18 0.31(0.30,0.33) 8 -1.737 0.082
Cdyn-48 h 0.40(0.36,0.42) 18 0.39(0.31,0.42) 8 -0.898 0.369
Cdyn-72 h 0.48(0.42,0.54) 18 0.36(0.29,0.40) 8 -3.182 0.001
Cdyn-7 d 0.60(0.52,0.67) 13 0.27(0.13,0.30) 4 -2.962 0.003
Cdyn-w 0.66(0.62,0.70) 18 0.30(0.13,0.35) 8 -4.015 <0.01
2.3 死亡风险因素分析

采用ROC曲线分析LUS评分、ECMO血流和Cdyn预测ECMO支持的重度ARDS患儿PICU生存状态的价值,发现LUS-72 h(AUC:0.955,95%CI:0.864~1.000,P < 0.01)、LUS-w(AUC:1.000,95%CI:1.000~1.000,P < 0.01)、ECMO血流-72 h(AUC:0.795,95%CI:0.606~0.984,P=0.018)、Cdyn-72 h(AUC:0.896,95%CI:0.754~1.000,P=0.002)、Cdyn-7 d(AUC:1.000,95%CI:1.000~1.000,P=0.003)、Cdyn-w(AUC:1.000,95%CI:1.000~1.000,P < 0.01)见图 1表 3。因AUC > 0.9预测重度ARDS患儿PICU生存状态准确性较高,且相对于LUS-w、Cdyn-w和Cdyn-7 d而言,LUS-72 h能更早预测患儿PICU生存状态,得出LUS-72 h截断值为24,灵敏度87.5%,特异度100.0%,以LUS-72 h≥24和LUS-72 h < 24进行分组,经Kaplan-Meier曲线分析提示,差异有统计学意义(P < 0.01,见图 2)。

图 1 ROC曲线预测重度ARDS患儿PICU生存状态的价值 Fig 1 The value of ROC curve in predicting PICU survival in children with severe ARDS

表 3 接受ECMO支持重度ARDS患儿PICU生存状态指标预测 Table 3 Survival status of children with severe ARDS receiving ECMO support in PICU
指标 AUC 95%CI P 灵敏度(%) 特异度(%)
LUS-72 h 0.955 0.864~1.000 < 0.01 87.5 100.0
LUS-w 1.000 1.000~1.000 < 0.01 100.0 100.0
ECMO血流-72 h 0.795 0.606~0.984 0.018 100.0 69.2
Cdyn-72 h 0.896 0.754~1.000 0.002 50.0 100.0
Cdyn-7 d 1.000 1.000~1.000 0.003 100.0 100.0
Cdyn-w 1.000 1.000~1.000 < 0.01 100.0 100.0
注:AUC为受试者工作特征曲线下面积;95%CI为95%可信区间。

图 2 Kaplan-Meier生存曲线对比LUS-72 h≥24 vs LUS-72 h < 24重度ARDS患儿的PICU生存状态 Fig 2 Kaplan-Meier survival curve compared PICU survival status of LUS-72h≥24 vs LUS-72 h < 24 in children with severe ARDS
3 讨论

床旁超声LUS评分对应于肺部每个区域的评分之和(范围为0~36),能动态、快速、半定量监测ARDS肺通气和肺含水量变化[5-6]。本研究通过动态测定重度ARDS患儿在ECMO治疗过程中LUS评分,发现死亡组在ECMO治疗72 h后LUS评分明显高于存活组(P < 0.05),并观察到ECMO治疗72 h后的LUS评分≥24分,是预测ECMO支持重度ARDS患儿预后的有效参考指标。

根据2012年柏林标准和2015年儿童急性肺损伤共识会议的推荐,PaO2/FiO2和OI [FiO2×平均气道压(Paw)×100]/PaO2仍然是目前对ARDS病情严重程度分级的经典指标[3, 8]。但在ECMO治疗过程中,需计算患者自身肺氧合功能与ECMO支持之间所占比例,无法通过PaO2/FiO2和OI精准评估呼吸衰竭程度和肺部病变。虽然胸部CT检查一直被认为是用来评估ARDS患者肺部形态学及定量分析肺组织通气的金标准[13-14],但转运风险、辐射损伤、较高的成本等缺陷均不适用于危重症患儿。肺部超声是基于失调的气-液比例定义各类病理征象。床旁肺部超声具有易操作、可重复性强、无辐射等优点,能动态、及时发现肺部病情改变。由于射线投射角度偏差、病灶过小、传统射线剂量不足等原因,在ICU中相对于床旁胸片而言,床旁肺部超声的灵敏度更高[15-16]

弥漫性肺泡损伤,促炎因子释放引起血管内皮和肺泡上皮受损,出现肺水肿、毛细血管渗漏、肺弥散障碍、严重的通气/血流比例失调、肺容积减少是ARDS的主要特点[17-19]。LUS评分可通过对12个胸壁区域依次扫描得到评分总和对肺部病变进行半定量评估。已有研究证实LUS评分可半定量评估肺水含量,指导呼吸机撤离,早期诊断呼吸机相关性肺炎(ventilator-associated pneumonia,VAP),且能对COVID-19相关ARDS患者进行病情评估[20-23]。本组对26例ECMO支持的重度ARDS患儿动态监测LUS评分,发现能替代常规胸部X线或CT检查,掌握患儿肺部病变与含水量的变化。在ECMO治疗72 h后存活组LUS评分已明显低于死亡组。进一步将两组患儿单因素组间比较有统计学差异的指标行ROC曲线分析显示LUS-72 h (AUC=0.955,灵敏度:87.5%,特异度:100.0%)能有效预测患儿预后,优于传统呼吸力学指标。通过Kaplan-Meier生存曲线分析发现,LUS-72 h≥24时患儿住院存活率明显降低(P < 0.01)。因此,ECMO治疗72 h的LUS评分是重度ARDS患儿预后预测的有效指标。本研究观察到LUS分值也能为临床液体管理和其他治疗(使用利尿剂或肾脏替代治疗)提供依据。

在ECMO支持重度ARDS患儿的动态LUS监测中,也存在一些局限性。例如需要对患儿进行翻动时应特别防止重要血管通路的移位,增加ECMO常规管理的负担。特别肥胖或严重气漏时,计算LUS分值可能不准,因此在40例ECMO支持ARDS患者中,仅纳入26例进行分析总结。其他不足是未能同步评估ECMO支持期间LUS与心血管功能指标之间的关系。

综上所述,本研究对26例患儿在ECMO治疗过程中动态监测LUS评分,发现LUS能弥补其他影像学检查的不足,比较准确掌握肺部病变的变化,并可作为预后判断的参考指标。在今后进一步研究中,仍需扩大样本量进行分层分析。

利益冲突   所有作者均声明不存在利益冲突

参考文献
[1] Kim WY, Hong SB. Sepsis and acute respiratory distress syndrome: recent update[J]. Tuberc Respir Dis (Seoul), 2016, 79(2): 53-57. DOI:10.4046/trd.2016.79.2.53
[2] Abe T, Madotto F, Pham T, et al. Epidemiology and patterns of tracheostomy practice in patients with acute respiratory distress syndrome in ICUs across 50 countries[J]. Crit Care Lond Engl, 2018, 22(1): 195. DOI:10.1186/s13054-018-2126-6
[3] Pediatric Acute Lung Injury Consensus Conference Group. Pediatric acute respiratory distress syndrome: consensus recommendations from the Pediatric Acute Lung Injury Consensus Conference[J]. Pediatr Crit Care Med, 2015, 16(5): 428-439. DOI:10.1097/PCC.0000000000000350
[4] Volpicelli G, Elbarbary M, Blaivas M, et al. International evidence-based recommendations for point-of-care lung ultrasound[J]. Intensive Care Med, 2012, 38(4): 577-591. DOI:10.1007/s00134-012-2513-4
[5] See KC, Ong V, Tan YL, et al. Chest radiography versus lung ultrasound for identification of acute respiratory distress syndrome: a retrospective observational study[J]. Crit Care, 2018, 22(1): 203. DOI:10.1186/s13054-018-2105-y
[6] Pisani L, Vercesi V, van Tongeren PSI, et al. The diagnostic accuracy for ARDS of global versus regional lung ultrasound scores - a post hoc analysis of an observational study in invasively ventilated ICU patients[J]. Intensive Care Med Exp, 2019, 7(suppl 1): 44. DOI:10.1186/s40635-019-0241-6
[7] Mongodi S, Pozzi M, Orlando A, et al. Lung ultrasound for daily monitoring of ARDS patients on extracorporeal membrane oxygenation: preliminary experience[J]. Intensive Care Med, 2018, 44(1): 123-124. DOI:10.1007/s00134-017-4941-7
[8] ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition[J]. JAMA, 2012, 307(23): 2526-2533. DOI:10.1001/jama.2012.5669
[9] Guidelines for Pediatric Respiratory Failur[DB/OL]. [2020-11-29]. https://www.elso.org/Resources/Guidelines.aspx.
[10] Mongodi S, Bouhemad B, Orlando A, et al. Modified lung ultrasound score for assessing and monitoring pulmonary aeration[J]. Ultraschall Med, 2017, 38(5): 530-537. DOI:10.1055/s-0042-120260
[11] Chiumello D, Mongodi S, Algieri I, et al. Assessment of lung aeration and recruitment by CT scan and ultrasound in acute respiratory distress syndrome patients[J]. Crit Care Med, 2018, 46(11): 1761-1768. DOI:10.1097/ccm.0000000000003340
[12] Bouhemad B, Brisson H, Le-Guen M, et al. Bedside ultrasound assessment of positive end-expiratory pressure-induced lung recruitment[J]. Am J Respir Crit Care Med, 2011, 183(3): 341-347. DOI:10.1164/rccm.201003-0369oc
[13] Mazzei MA, Guerrini S, Cioffi Squitieri N, et al. Role of computed tomography in the diagnosis of acute lung injury/acute respiratory distress syndrome[J]. Recenti Prog Med, 2012, 103(11): 459-464. DOI:10.1701/1166.12889
[14] Cereda M, Xin Y, Hamedani H, et al. Tidal changes on CT and progression of ARDS[J]. Thorax, 2017, 72(11): 981-989. DOI:10.1136/thoraxjnl-2016-209833
[15] Lichtenstein D, Goldstein I, Mourgeon E, et al. Comparative diagnostic performances of auscultation, chest radiography, and lung ultrasonography in acute respiratory distress syndrome[J]. Anesthesiology, 2004, 100(1): 9-15. DOI:10.1097/00000542-200401000-00006
[16] Staub LJ, Mazzali Biscaro RR, Kaszubowski E, et al. Lung ultrasound for the emergency diagnosis of pneumonia, acute heart failure, and exacerbations of chronic obstructive pulmonary disease/asthma in adults: a systematic review and meta-analysis[J]. J Emerg Med, 2019, 56(1): 53-69. DOI:10.1016/j.jemermed.2018.09.009
[17] Derwall M, Martin L, Rossaint R. The acute respiratory distress syndrome: pathophysiology, current clinical practice, and emerging therapies[J]. Expert Rev Respir Med, 2018, 12(12): 1021-1029. DOI:10.1080/17476348.2018.1548280
[18] Thille AW, Esteban A, Fernández-Segoviano P, et al. Comparison of the Berlin definition for acute respiratory distress syndrome with autopsy[J]. Am J Respir Crit Care Med, 2013, 187(7): 761-767. DOI:10.1164/rccm.201211-1981oc
[19] Fujishima S. Pathophysiology and biomarkers of acute respiratory distress syndrome[J]. J Intensive Care, 2014, 2(1): 32. DOI:10.1186/2052-0492-2-32
[20] Bataille B, Rao G, Cocquet P, et al. Accuracy of ultrasound B-lines score and E/Ea ratio to estimate extravascular lung water and its variations in patients with acute respiratory distress syndrome[J]. J Clin Monit Comput, 2015, 29(1): 169-176. DOI:10.1007/s10877-014-9582-6
[21] Soummer A, Perbet S, Brisson H, et al. Ultrasound assessment of lung aeration loss during a successful weaning trial predicts postextubation distress[J]. Crit Care Med, 2012, 40(7): 2064-2072. DOI:10.1097/ccm.0b013e31824e68ae
[22] Dargent A, Chatelain E, Kreitmann L, et al. Lung ultrasound score to monitor COVID-19 pneumonia progression in patients with ARDS[J]. PLoS One, 2020, 15(7): e0236312. DOI:10.1371/journal.pone.0236312
[23] 李幼霞, 刘莹, 黄煌, 等. 肺部超声评估经鼻高流量氧疗治疗重型COVID-19患者疗效的价值[J]. 中国急救医学, 2021, 41(5): 397-403. DOI:10.3969/j.issn.1002-1949.2021.05.006