脓毒症是宿主对感染的反应失调引起的威胁生命的器官功能障碍[1]。尽管对疾病的发病机制、治疗策略等的认识不断提升,但脓毒症仍然是重症监护病房的主要死亡病因之一[2-3]。脓毒症给全世界带来了严重的经济和社会负担,令人担忧的是未来脓毒症的发病率可能会不断增加[4]。
1 脓毒症的免疫抑制关于脓毒症机制的认识在不断变化。在研究的早期阶段,对于脓毒症的认识主要集中于过度活化的炎症反应,治疗策略也集中于对炎症反应的抑制,但收效甚微。许多研究通过抑制细胞因子的产生如应用IL-1、TNF阻滞剂来抑制炎症反应,但在降低病死率方面几乎没有成功甚至反而升高[5-6]。近几年研究显示脓毒症不仅会引起过度炎症反应,还会导致同时发生的免疫抑制[7]。且随着临床治疗水平的不断提升,更多的患者在脓毒症早期阶段幸存,但疾病病程延长,更多的向免疫抑制表型转换,脓毒症晚期病死率不断增加[8-10]。人们日益关注免疫抑制在脓毒症中的表现。实际上,超过70%的死亡发生在脓毒症起病3 d后,相当多的一部分发生在起病几周后[11]。
免疫抑制包括免疫细胞耗竭(其中受影响最严重的是T细胞)、T细胞功能受损、抗原呈递过程受损、细胞因子分泌失调等[12-13]。T细胞在人体的适应性免疫应答中占核心地位,T细胞通过分化为多种辅助T细胞进而全面影响机体免疫。脓毒症患者中T细胞功能明显抑制,这在患者脾脏组织的检测、验尸研究中已得到证实[12, 14]。T细胞的活化和增殖需要双重信号。除了需要抗原肽-MHC分子复合物与T细胞表面的TCR-CD3复合物结合产生第一信号使T细胞初步活化外,还需要共刺激分子参与提供的第二信号,缺乏共刺激分子T细胞将不能活化而失能。共刺激分子可分为正性及负性共刺激分子。初步活化的T细胞与正性共刺激分子结合后完全活化,分泌多种细胞因子及表达相关受体; 与负性共刺激分子结合则启动抑制性信号,使T细胞功能抑制。负性共刺激分子主要包括程序性细胞死亡受体-1(programmed cell death receptor-1, PD-1)、CTLA-4等。
2 PD-1/PD-L1与脓毒症脓毒症常伴随着感染所致过度活化的炎症反应及高的抗原负荷,在面对持续的抗原暴露及炎症时,T细胞会出现功能抑制,细胞表面抑制性分子表达增加[14]。PD-1及其配体程序性细胞死亡配体1(programmed cell death ligand-1, PD-L1)是脓毒症主要的抑制性受体/配体之一。PD-1通常表达于活化的T细胞、B细胞、NK细胞表面,PD-L1则表达于抗原提呈细胞、T细胞、B细胞等表面[15]。PD-1与PD-L1结合产生负刺激信号抑制T细胞的过度活化,从而维持体内免疫稳态。PD-1与PD-L1结合后产生的负性刺激信号传导至T细胞胞内段免疫受体酪氨酸抑制基序,引发SHP2的磷酸化[16],进而阻断ZAP70、AKT、PI3K和PKC-θ的激活并介导下游事件,最终导致T细胞增殖被抑制,IL-2和IFN-γ等细胞因子产生减少[17]。
动物模型研究已证明脓毒症期间PD-1及PD-L1表达升高。脓毒症小鼠中PD-1定量表达增高,使用PD-1抗体可减少脓毒症引起的淋巴细胞凋亡并改善生存率[18]。也有研究显示脓毒症小鼠PD-1和PD-L1的表达增加,且PD-1 / PD-L1诱导了T细胞的凋亡[19]。一项荟萃研究对共计394只动物的4项研究和9个对照组进行合并后分析,统计结果表明阻断PD-1增加了脓毒症动物的存活率[20]。
临床研究也支持了基础研究的发现。有研究显示脓毒症患者体内T细胞凋亡明显增加,脓毒症T细胞上PD-1和单核细胞上PD-L1的表达显著上调[21];也有研究表明单核细胞上PD-L1水平可预测脓毒症的预后,这提示PD-1 / PD-L1途径可能在脓毒症免疫抑制中起着重要作用[22]。Riche等[23]对86例脓毒性休克患者进行动态监测,发现在患者出院后存在长期的免疫紊乱,出院后一年PD-1虽较在院时降低,但仍保持在高的异常范围内,可见PD-1在脓毒症的长期免疫中起着重要的作用。Mansur等[24]收集了219名脓毒症患者血样进行PD-1 rs11568821基因分型,结果显示纯合子90 d病死率显著高于等位基因携带者,纯合子SOFA评分更高、需要更积极的血管活性药物治疗,可以推测PD-1基因不同的调控表达可能会为脓毒症患者带来不同的结局。
3 sPD-1/sPD-L1与脓毒症PD-1/PD-L1在体内存在膜结合形式的同时也存在可溶性形式:可溶性PD-1(soluble PD-1, sPD-1)/可溶性sPD-L1(soluble sPD-L1, sPD-L1)。sPD-1/ sPD-L1在一定程度上可反映体内PD-1/PD-L1水平[25-26]。sPD-1可与PD-L1结合、sPD-L1可与PD-1结合,但sPD-1/ sPD-L1为可溶性形式缺乏胞内段,与对应受体结合后不能进一步活化产生下游信号。sPD-1可通过与PDL-1结合竞争性抑制PD-1/PD-L1途径的激活[27-28]。但sPD-L1与PD-1结合后是否可以传递抑制信号尚有争议。虽然sPD-L1作用的具体机制暂未完全明确[29],但已有许多研究显示出sPD-L1是脓毒症疗效和预后判断的有效生物标志物[30-31]。
目前sPD-1/ sPD-L1在肿瘤[32-33]、自身免疫性疾病[34]、肝炎[35]、艾滋病[36]等方面研究较多。脓毒症与上述多种疾病在免疫变化上有相似之处,均存在着明显的免疫功能紊乱,且免疫抑制在其中发挥着重要的作用,PD-1/PD-L1是关键的抑制信号之一[37]。多项研究表明sPD-1/ sPD-L1在脓毒症中也扮演着重要的作用。有研究发现sPD-1和sPD-L1在脓毒症患者中表达升高,且非存活者高于存活者,sPD-1及sPD-L1水平与脓毒症的严重程度呈正相关[38],第1天和第7天血sPD-1水平是患者28 d病死率的独立预测因素。Monaghan等[39]测定了ARDS患者与健康对照者、诱发ARDS的脓毒症小鼠与健康小鼠体内的血清及支气管肺泡灌洗液中sPD-1,结果显示ARDS患者与实验组的小鼠体内血清和支气管肺泡灌洗液液中的sPD-1较对照组均显著增加,这提示sPD-1可能具有作为脓毒症生物标志物的价值。Liu等[30]的研究发现与健康对照相比,脓毒症患者血清sPD-L1、sPD-1水平显著增加;与幸存者相比,非幸存者血清sPD-L1水平显著升高;sPD-L1水平预测28 d病死率的准确性与APACHE-II评分和SOFA评分相似;Cox回归分析显示sPD-L1是一个独立的预后因素。Stortz等[40]评估了88名脓毒症患者和20名健康对照,发现脓毒症患者较健康对照绝对淋巴细胞计数和单核细胞人白细胞抗原-DR(mHLA-DR)显著降低,sPD-L1水平升高;并且在脓毒症幸存者中,快速恢复组和慢性危重病患者组体内绝对淋巴细胞计数、sPD-L1、mHLA-DR在起病初没有差异;然而随着时间推移,与快速恢复组相反,慢性危重病组患者绝对淋巴细胞计数、HLA-DR和sPD-L1未表现出恢复至正常值的趋势,提示sPD-L1可能对脓毒症预后的评估有一定参考价值。
尽管目前对脓毒症的研究众多,但其免疫调节途径并不完全清楚。PD-1/PD-L1及其可溶性形式通过抑制性途径影响T细胞功能,进而在脓毒症免疫抑制中起着重要的作用。目前研究已表明PD-1/PD-L1及其可溶性形式对脓毒症病情和预后的判断有良好的参考价值,但更详细的作用机制、临床应用等仍需进一步研究,未来可能为脓毒症的诊断治疗提供新的生物标志物与靶点。
利益冲突 所有作者均声明不存在利益冲突
| [1] | Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. DOI:10.1001/jama.2016.0287 |
| [2] | Mayr FB, Yende S, Angus DC. Epidemiology of severe sepsis[J]. Virulence, 2014, 5(1): 4-11. DOI:10.4161/viru.27372 |
| [3] | 中国医疗保健国际交流促进会急诊医学分会, 中华医学会急诊医学分会, 中国医师协会急诊医师分会, 等. 中国脓毒症早期预防与阻断急诊专家共识[J]. 中华急诊医学杂志, 2020, 29(7): 885-895. DOI:10.3760/cma.j.issn.1671-0282.2020.07.001 |
| [4] | Fleischmann C, Scherag A, Adhikari NK, et al. Assessment of global incidence and mortality of hospital-treated sepsis. current estimates and limitations[J]. Am J Respir Crit Care Med, 2016, 193(3): 259-272. DOI:10.1164/rccm.201504-0781OC |
| [5] | Cohen J, Opal S, Calandra T. Sepsis studies need new direction[J]. Lancet Infect Dis, 2012, 12(7): 503-505. DOI:10.1016/S1473-3099(12)70136-6 |
| [6] | Angus DC. The search for effective therapy for sepsis: back to the drawing board?[J]. JAMA, 2011, 306(23): 2614-2615. DOI:10.1001/jama.2011.1853 |
| [7] | Markwart R, Condotta SA, Requardt RP, et al. Immunosuppression after sepsis: systemic inflammation and sepsis induce a loss of naïve T-cells but no enduring cell-autonomous defects in T-cell function[J]. PLoS One, 2014, 9(12): e115094. DOI:10.1371/journal.pone.0115094 |
| [8] | Schorr CA, Dellinger RP. The Surviving Sepsis Campaign: past, present and future[J]. Trends Mol Med, 2014, 20(4): 192-194. DOI:10.1016/j.molmed.2014.02.001 |
| [9] | 季兵, 朱建良, 马丽梅, 等. 早期集束化治疗对脓毒症及脓毒性休克患者预后的影响[J]. 中华急诊医学杂志, 2019, 28(2): 170-174. DOI:10.3760/cma.j.issn.1671-0282.2019.02.008 |
| [10] | 中华医学会急诊医学分会, 中国医师协会急诊医师分会, 中国人民解放军急救医学专业委员会, 等. 脓毒症液体治疗急诊专家共识[J]. 中华急诊医学杂志, 2018, 27(1): 10-38. DOI:10.3760/cma.j.issn.1671-0282.2018.01.007 |
| [11] | Otto GP, Sossdorf M, Claus RA, et al. The late phase of Sepsis is characterized by an increased microbiological burden and death rate[J]. Crit Care, 2011, 15(4): R183. DOI:10.1186/cc10332 |
| [12] | Boomer JS, To K, Chang KC, et al. Immunosuppression in patients who die of sepsis and multiple organ failure[J]. JAMA, 2011, 306(23): 2594-2605. DOI:10.1001/jama.2011.1829 |
| [13] | Boomer JS, Shuherk-Shaffer J, Hotchkiss RS, et al. A prospective analysis of lymphocyte phenotype and function over the course of acute sepsis[J]. Crit Care, 2012, 16(3): R112. DOI:10.1186/cc11404 |
| [14] | Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion[J]. Nat Rev Immunol, 2015, 15(8): 486-499. DOI:10.1038/nri3862 |
| [15] | Zhang XW, Schwartz JC, Guo XL, et al. Structural and functional analysis of the costimulatory receptor programmed death-1[J]. Immunity, 2004, 20(3): 337-347. DOI:10.1016/s1074-7613(04)00051-2 |
| [16] | Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion[J]. Nat Rev Immunol, 2015, 15(8): 486-499. DOI:10.1038/nri3862 |
| [17] | Wakeley ME, Gray CC, Monaghan SF, et al. Check point inhibitors and their role in immunosuppression in sepsis[J]. Crit Care Clin, 2020, 36(1): 69-88. DOI:10.1016/j.ccc.2019.08.006 |
| [18] | Brahmamdam P, Inoue S, Unsinger J, et al. Delayed administration of anti-PD-1 antibody reverses immune dysfunction and improves survival during sepsis[J]. J Leukoc Biol, 2010, 88(2): 233-240. DOI:10.1189/jlb.0110037 |
| [19] | Xu JJ, Ma XH, Yu KL, et al. Lactate up-regulates the expression of PD-L1 in kidney and causes immunosuppression in septic acute renal injury[J]. Wei Mian Yu Gan Ran Za Zhi, 2019: S1684-S1182(19)30168-9. DOI:10.1016/j.jmii.2019.10.006 |
| [20] | Zhang Q, Qi ZJ, Bo-Liu, et al. Programmed cell death-1/programmed death-ligand 1 blockade improves survival of animals with sepsis: a systematic review and meta-analysis[J]. Biomed Res Int, 2018, 2018: 1969474. DOI:10.1155/2018/1969474 |
| [21] | Tai HY, Xing HL, Xiang D, et al. Monocyte programmed death ligand-1, A predicator for 28-day mortality in septic patients[J]. Am J Med Sci, 2018, 355(4): 362-367. DOI:10.1016/j.amjms.2017.12.008 |
| [22] | Zhang Y, Li JB, Lou JS, et al. Upregulation of programmed death-1 on T cells and programmed death ligand-1 on monocytes in septic shock patients[J]. Crit Care, 2011, 15(1): R70. DOI:10.1186/cc10059 |
| [23] | Riché F, Chousterman BG, Valleur P, et al. Protracted immune disorders at one year after ICU discharge in patients with septic shock[J]. Crit Care, 2018, 22(1): 42. DOI:10.1186/s13054-017-1934-4 |
| [24] | Mansur A, Hinz J, Hillebrecht B, et al. Ninety-day survival rate of patients with Sepsis relates to programmed cell death 1 genetic polymorphism rs11568821[J]. J Investig Med, 2014, 62(3): 638-643. |
| [25] | Frigola X, Inman BA, Lohse CM, et al. Identification of a soluble form of B7-H1 that retains immunosuppressive activity and is associated with aggressive renal cell carcinoma[J]. Clin Cancer Res, 2011, 17(7): 1915-1923. DOI:10.1158/1078-0432.CCR-10-0250 |
| [26] | Chen YJ, Wang Q, Shi BM, et al. Development of a sandwich ELISA for evaluating soluble PD-L1 (CD274) in human sera of different ages as well as supernatants of PD-L1+ cell lines[J]. Cytokine, 2011, 56(2): 231-238. DOI:10.1016/j.cyto.2011.06.004 |
| [27] | Song MY, Park SH, Nam HJ, et al. Enhancement of vaccine-induced primary and memory CD8(+) T-cell responses by soluble PD-1[J]. J Immunother, 2011, 34(3): 297-306. DOI:10.1097/CJI.0b013e318210ed0e |
| [28] | Chen YJ, Wang Q, Shi BM, et al. Development of a sandwich ELISA for evaluating soluble PD-L1 (CD274) in human sera of different ages as well as supernatants of PD-L1+ cell lines[J]. Cytokine, 2011, 56(2): 231-238. DOI:10.1016/j.cyto.2011.06.004 |
| [29] | Frigola X, Inman BA, Krco CJ, et al. Soluble B7-H1: differences in production between dendritic cells and T cells[J]. Immunol Lett, 2012, 142(1/2): 78-82. DOI:10.1016/j.imlet.2011.11.001 |
| [30] | Liu M, Zhang X, Chen H, et al. Serum sPD-L1, upregulated in Sepsis, may reflect disease severity and clinical outcomes in septic patients[J]. Scand J Immunol, 2017, 85(1): 66-72. DOI:10.1111/sji.12509 |
| [31] | Chen Y, Li M, Liu J, et al. sPD-L1 expression is associated with immunosuppression and infectious complications in patients with acute pancreatitis[J]. Scand J Immunol, 2017, 86(2): 100-106. DOI:10.1111/sji.12564 |
| [32] | Kruger S, Legenstein ML, Rösgen V, et al. Serum levels of soluble programmed death protein 1 (sPD-1) and soluble programmed death ligand 1 (sPD-L1) in advanced pancreatic cancer[J]. Oncoimmunology, 2017, 6(5): e1310358. DOI:10.1080/2162402X.2017.1310358 |
| [33] | Yoshida J, Ishikawa T, Doi T, et al. Clinical significance of soluble forms of immune checkpoint molecules in advanced esophageal cancer[J]. Med Oncol, 2019, 36(7): 60. DOI:10.1007/s12032-019-1285-x |
| [34] | Yanaba K, Hayashi M, Yoshihara Y, et al. Serum levels of soluble programmed death-1 and programmed death ligand-1 in systemic sclerosis: Association with extent of skin sclerosis[J]. J Dermatol, 2016, 43(8): 954-957. DOI:10.1111/1346-8138.13339 |
| [35] | Zhou L, Li XY, Huang XH, et al. Soluble programmed death-1 is a useful Indicator for inflammatory and fibrosis severity in chronic hepatitis B[J]. J Viral Hepat, 2019, 26(7): 795-802. DOI:10.1111/jvh.13055 |
| [36] | León-Flores A, Del Río Estrada PM, Álvarez-García LX, et al. Increased levels of soluble co-stimulatory molecule PD-L1 (B7-H1) in the plasma of viraemic HIV-1+ individuals[J]. Immunol Lett, 2018, 203: 70-79. DOI:10.1016/j.imlet.2018.09.007 |
| [37] | Schildberg FA, Klein SR, Freeman GJ, et al. Coinhibitory pathways in the B7-CD28 ligand-receptor family[J]. Immunity, 2016, 44(5): 955-972. DOI:10.1016/j.immuni.2016.05.002 |
| [38] | Zhao YZ, Jia YM, Li CS, et al. Predictive value of soluble programmed death-1 for severe sepsis and septic shock during the first week in an intensive care unit[J]. Shock, 2019, 51(3): 289-297. DOI:10.1097/SHK.0000000000001171 |
| [39] | Monaghan S F, Chung C S, Chen Y, et al. Soluble programmed cell death receptor-1 (sPD-1): a potential biomarker with anti-inflammatory properties in human and experimental acute respiratory distress syndrome (ARDS)[J]. J Transl Med, 2016, 14(1): 312. DOI:10.1186/s12967-016-1071-x |
| [40] | Stortz J A, Murphy T J, Raymond S L, et al. Evidence for persistent immune suppression in patients who develop chronic critical illness after sepsis[J]. Shock, 2018, 49(3): 249-258. DOI:10.1097/SHK.0000000000000981 |
2021, Vol. 30



