中华急诊医学杂志  2019, Vol. 28 Issue (12): 1571-1575   DOI: 10.3760/cma.j.issn.1671-0282.2019.12.026
Nrf2-HO1信号通路调控脑缺血-再灌注氧化应激损伤的研究进展
叶胜 , 曹钰     
四川大学华西医院急诊科,成都 610000

心脏骤停(cardiac arrest,CA)在全球范围内是导致患者死亡的主要原因之一[1],其中超过50%的存活患者在心肺复苏后仍存在中到重度神经功能缺陷[2-3],严重影响患者的生活质量[4-5],全脑的缺血缺氧改变以及缺血后的再灌注损伤是心肺复苏后导致患者神经功能预后不良的重要因素[6]

脑缺血-再灌注损伤是一个复杂的病理生理过程,包括活性氧(reactive oxygen species, ROS)增加所导致的氧化应激、细胞内Ca2+内流增加引起的钙超载、白细胞聚集引起的炎症反应[7]等,这些机制共同存在并互相影响,最终形成恶性循环导致细胞的凋亡及坏死[8-9]。其中,线粒体损伤引起活性氧介导的氧化应激在脑缺血-再灌注损伤的级联反应过程中起到了重要作用,而Nrf2-HO1信号通路的激活可以通过转录诱导保护性基因消除活性氧的产生,从而抵抗缺血再灌注对机体造成的氧化应激损伤[10]。本文就Nrf2-HO1信号通路调控脑缺血再灌注氧化应激损伤的研究进展做一综述。

1 氧化应激是脑缺血-再灌注损伤的重要途径

脑细胞耗氧量约占机体耗氧量的20%,其通过线粒体电子传递链产生足够的三磷酸腺苷(adenosine triphosphate, ATP)维持细胞功能[11]。线粒体氧化磷酸化因缺氧受到抑制促使线粒体中ATP的合成和细胞能量依赖性的转运过程减弱,从而导致能量依赖性的Na+-Ca2+[12]、Na+-K+泵失活,引起细胞内Ca2+积聚及Na+排泄障碍[13]。此外,活性氧是需氧细胞在代谢过程中产生的一系列氧自由基及其衍生物,主要包括超氧阴离子O2-、过氧化氢H2O2、羟自由基-OH[14]。活性氧的迅速增加可以加快脑细胞的缺血-再灌注损伤,包括细胞凋亡、炎症和细胞坏死[15]等,而抑制活性氧的产生可以保护大脑免受缺血再灌注后的血脑屏障损伤[16]。活性氧可激活介导血脑屏障功能障碍的下游通路,如紧密连接修饰、细胞骨架重组和基质金属蛋白酶(MMPs)[17]等。同样,活性氧诱导的氧化应激损伤会导致血脑屏障的膜蛋白损伤和脂质过氧化,从而增加血脑屏障的通透性[18]。除此之外,过多的活性氧可以影响血脑屏障紧密连接中闭合蛋白的分布和表达导致血脑屏障损伤[19]。相关实验证明:ROS可通过多种途径引起细胞骨架的变化,如抑制Rho激酶和蛋白激酶B可以缓解ROS诱导的细胞骨架重组[20],ROS激活ATF2/AP-1信号通路降解基底蛋白从而破坏血脑屏障的完整性等[21-22]

2 Nrf2-HO1是调控内源性氧化应激的关键信号通路

氧化应激作为缺血再灌注脑损伤的一个重要机制已得到广泛认可,使用抗氧化剂治疗可有助于减少神经细胞变性,改善神经功能预后[23]。氧化应激发生时,细胞内氧化和抗氧化系统的失衡可导致多种信号通路被激活[24],如Nrf2-HO1信号通路可通过调控抗氧化酶HO-1的表达导致细胞氧化还原状态的恢复;NF-κB信号通路的激活可调节炎症状态下的细胞增殖和细胞凋亡;PI3K-AKT信号通路通过调节eNOS的磷酸化产生NO调节血管张力导致血管内皮细胞损伤。其中,Nrf2-HO1抗氧化元件信号通路的激活是细胞防御氧化应激的主要机制[25],其通过增强偶联反应和细胞抗氧化能力控制基因的表达[26],从而调控参与解毒及消除活性氧的蛋白产生,同时通过转录保护性诱导基因来维持细胞氧化还原的稳态,其被认为是一种处理活性氧的适应机制[27]

3 Nrf2的结构特征及生物学功能

核因子E2相关因子2(nuclear factor erythroid-2 related factor 2,Nrf2)是CNC调节蛋白家族的具有调节细胞氧化还原功能的转录因子[28],可以调节抗氧化/亲电反应元件ARE/EpRE基因。Nrf2蛋白由605个氨基酸组成,包含7个特定功能的相关蛋白同源结构域(Nrf2-ECH homology, Neh)[29]。Neh1区域由保守的CNC-bZIP组成,该区域主要负责Nrf2与细胞核内的小肌肉筋膜纤维肉瘤(musculoaponeurotic fibrosarcoma, Maf)蛋白形成二聚体,并作为ARE序列的结合位点;Neh2区域包含两种高度保守的结合位点(低亲和力的DLG肽序列和高亲和力的ETGE肽序列),通过与Keap1蛋白结合对Nrf2活性进行负性调控;Neh3区域位于Nrf2的-COOH端,通过结合特定的ATP酶/解旋酶DNA结合蛋白(chromo-ATPase/helicase DNA-binding protein, CHD) 6进行转录激活;Neh4区域和Neh5区域位于Neh1、7区域之间,当Nrf2进入细胞核后与ARE结合时需要Neh4、Neh5共同激活cAMP反应元件结合蛋白,才能启动转录过程;Neh6区域包含两个高度保守的肽序列,通过与β-转导重复相容蛋白(β-transducin repeat-containing protein,β-TrCP)结合负性调控Nrf2的活动;Neh7区域通过结合维甲酸Xα受体(retinoid X receptor α,RXRα)阻止活化因子对Neh4、Neh5的活化,从而抑制Nrf2的激活[30-32]

4 HO-1的结构特征及生物学功能

血红素氧合酶(heme oxygenase, HO)是血红素分解代谢过程中的限速酶,其可以催化血红素降解为一氧化碳(carbonic oxide,CO)、胆绿素和游离铁[33]。血红素的降解产物具有免疫调节、抗凋亡和血管舒张等特性[33]:一氧化碳作为具有血管舒张作用的信号分子而发挥抗炎、抗凋亡作用[34];胆绿素在胆绿素还原酶的作用下转化为胆红素,其能够清除羟自由基和超氧阴离子,并可通过降低丙二醛改善脂质过氧化损伤[35];游离铁的释放有利于铁蛋白重链的形成及膜转运蛋白Fe-ATPase的激活,其可以通过促进细胞内铁外排减少细胞内游离铁的含量,从而减轻细胞氧化损伤[36]。血红素氧化酶分为HO-1、HO-2、HO-3三个亚型,几乎所有的细胞在应激状态下都会产生HO-1[37]。HO-1的相对分子质量32 800 Da,由288个氨基酸组成,人与大鼠HO-1具有80%的同源性[38]。HO-1以一个较低的水平存在于大多数哺乳动物组织中[39],其可被一氧化氮、生长因子、细胞因子等多种物质刺激表达上调而起到抗炎、抗凋亡和抗增殖作用[40]

5 Nrf2在氧化应激状态下对HO-1的调控作用

HO-1诱导剂可通过激活多种转录因子调控血红素氧合酶-1基因的表达[38],细胞内存在多种信号分子和转录因子与调控HO-1的表达相关,如Nrf2、MAPK、AP-1、NF-κB等[41]。其中,Nrf2-HO1信号通路是感知环境和调控内源性氧化应激的关键信号通路之一,其通过转录诱导保护性基因来维持细胞氧化还原的稳态[27]

正常生理情况下,Nrf2与Keap1蛋白结合以非活性的状态存在于细胞质中,其通过靶向蛋白酶降解从而保持Nrf2的低转录活性[42]。然而在氧化应激的状态下,Nrf2-Keap1的相互作用以剂量依赖的方式进行解离。目前有两种公认的理论:一种是“铰链和门闩”学说,Nrf2通过两个不同的结合位点(高亲和力铰链,低亲和力闩锁)与Keap1的DGR域结合,当Keap1半胱氨酸残基检测到细胞损伤时,低亲和力闩锁结合Nrf2的作用被消除,Nrf2降解被破坏[43];另一种是Cul3分离学说[44],ROS和亲电试剂导致Keap1半胱氨酸残基氧化后引起Cul3与Keap1分离,从而阻止Nrf2降解。细胞损伤发生时,Nrf2与Keap1解离后从细胞质中转移到细胞核,其与Maf蛋白形成异二聚体后识别ARE序列,在启动子区域内启动一系列含有抗氧化基因的转录[45],其中包括HO-1、SODs、GPx、CATs、NAD(P)H等[46]图 1)。HO-1是细胞内重要的抗氧化应激途径,其在转录水平上接受转录因子Nrf2的调控[47],催化血红素氧化成胆绿素、游离铁和一氧化碳发挥抗氧化应激、抗炎作用[45]。目前,HO-1已成为一种理想的细胞保护剂,对其表达水平的调节可能对多种疾病提供潜在的治疗价值。

图 1 Nrf2在氧化应激状态下对HO-1的调控机制[48]
6 调控Nrf2-HO1信号通路对脑缺血-再灌注损伤的保护作用

Nrf2-HO1信号通路被认为是对抗氧化应激的主要细胞防御机制[49],其可以通过调节抗炎因子和抗氧化酶的表达防止星形胶质细胞和神经元细胞的缺血-再灌注损伤[50-51],上调Nrf2的表达可以通过诱导神经元细胞中抗氧化酶、解毒酶的生成加速酶促反应,同时可以促进GSH、SOD及其他抗氧化剂的表达起到神经保护作用[52]

Lei等[53]研究发现:缺血再灌注后,脑组织ROS急剧增加,细胞核内Nrf2表达升高,HO-1的表达也进一步上调,在使用番茄红素干预后,细胞内Nrf2、HO-1表达水平进一步升高;Fang等[49]使用胰高血糖素样肽-1(glucagon-like peptide-1,GLP-1)对2型糖尿病合并大脑中动脉闭塞造成脑缺血再灌注的大鼠进行研究发现:GLP-1不仅降低血糖,还可以通过激活PI3K诱导Nrf2蛋白的表达上调和细胞核转移,从而提高HO-1的表达和抗氧化酶SOD的活性,降低MDA的含量,起到神经保护作用;同样,Lou等[54]研究表明:缺血-再灌注后小鼠脑组织的抗氧化酶SOD、CAT、抗凋亡蛋白Bcl-2以及Nrf2、HO1蛋白的表达明显下降,而石竹稀预处理后发现脑组织的抗氧化、抗凋亡能力明显改善,Nrf2、HO1的表达也明显提高。除此之外,多项研究同样证实调节Nrf2-HO1通路可以改善缺血-再灌注后的脑损伤[41, 55-56]

7 结语

Nrf2-HO1信号通路在调控脑缺血-再灌注损伤中起到了关键作用,其能够通过调节HO-1的活性,催化血红素氧化成胆绿素、游离铁和一氧化碳发挥抗氧化应激、抗炎作用。目前,Nrf2-HO1信号通路的研究主要局限于颈动脉及大脑中动脉闭塞后再灌注动物模型导致的局灶性缺血再灌注脑损伤,然而对于心肺复苏后造成的全脑缺血-再灌注损伤的研究较少,所以Nrf2-HO1信号通路是否参与心肺复苏后全脑缺血-再灌注损伤的机制仍需要进一步研究。

参考文献
[1] Kleinman ME, Brennan EE, Goldberger ZD, et al. Part 5: adult basic life support and cardiopulmonary resuscitation quality: 2015 american heart association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2015, 132(18 Suppl 2): S414-435. DOI:10.1161/CIR.0000000000000259
[2] Lu J, Shen Y, Qian HY, et al. Effects of mild hypothermia on the ROS and expression of caspase-3 mRNA and LC3 of hippocampus nerve cells in rats after cardiopulmonary resuscitation[J]. World J Emerg Med, 2014, 5(4): 298-305. DOI:10.5847/wjem.j.issn.1920-8642.2014.04.010
[3] 冯璐, 马青变. 心肺复苏后患者神经功能预后的预测策略研究进展[J]. 中华急诊医学杂志, 2016, 25(10): 1341-1344. DOI:10.3760/cma.j.issn.1671-0282.2016.10.028
[4] Lurie KG, Nemergut EC, Yannopoulos D, et al. The Physiology of Cardiopulmonary Resuscitation[J]. Anesth Analg, 2016, 122(3): 767-783. DOI:10.1213/ANE.0000000000000926
[5] Young GB. Neurologic prognosis after cardiac arrest[J]. N Engl J Med, 2009, 361(6): 605-611. DOI:10.1056/NEJMcp0903466
[6] Schnaubelt S, Sulzgruber P, Menger J, et al. Regional cerebral oxygen saturation during cardiopulmonary resuscitation as a predictor of return of spontaneous circulation and favourable neurological outcome-A review of the current literature[J]. Resuscitation, 2018, 125: 39-47. DOI:10.1016/j.resuscitation.2018.01.028
[7] Su J, Liu J, Yan XY, et al. Cytoprotective effect of the UCP2-SIRT3 signaling pathway by decreasing mitochondrial oxidative stress on cerebral ischemia-reperfusion injury[J]. Int J Mol Sci, 2017, 18(7): pii: E1599. DOI:10.3390/ijms18071599
[8] Khoshnam SE, Winlow W, Farzaneh M, et al. Pathogenic mechanisms following ischemic stroke[J]. Neurol Sci, 2017, 38(7): 1167-1186. DOI:10.1007/s10072-017-2938-1
[9] Rekuviene E, Ivanoviene L, Borutaite V, et al. Rotenone decreases ischemia-induced injury by inhibiting mitochondrial permeability transition in mature brains[J]. Neurosci Lett, 2017, 653: 45-50. DOI:10.1016/j.neulet.2017.05.028
[10] Li L, Dong H, Song E, et al. Nrf2/ARE pathway activation, HO-1 and NQO1 induction by polychlorinated biphenyl quinone is associated with reactive oxygen species and PI3K/AKT signaling[J]. Chem Biol Interact, 2014, 209: 56-67. DOI:10.1016/j.cbi.2013.12.005
[11] Anne SR, Leak RK, Gao Y, et al. The dynamics of the mitochondrial organelle as a potential therapeutic target[J]. J Cereb Blood Flow Metab, 2013, 33(1): 22-32. DOI:10.1038/jcbfm.2012.158
[12] Su J, Liu J, Yan XY, et al. Cytoprotective Effect of the UCP2-SIRT3 Signaling Pathway by Decreasing Mitochondrial Oxidative Stress on Cerebral Ischemia-Reperfusion Injury[J]. Int J Mol Sci, 2017, 18(7). DOI:10.3390/ijms18071599
[13] Bertero E, Maack C. Calcium signaling and reactive oxygen species in mitochondria[J]. Circ Res, 2018, 122(10): 1460-1478. DOI:10.1161/CIRCRESAHA.118.310082
[14] Chen H, Yoshioka H, Kim GS, et al. Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection[J]. Antioxid Redox Signal, 2011, 14(8): 1505-1517. DOI:10.1089/ars.2010.3576
[15] Kahles T, Brandes RP. NADPH oxidases as therapeutic targets in ischemic stroke[J]. Cell Mol Life Sci, 2012, 69(14): 2345-2363. DOI:10.1007/s00018-012-1011-8
[16] Ku J M, Taher M, Chin KY, et al. Protective actions of des-acylated ghrelin on brain injury and blood-brain barrier disruption after stroke in mice[J]. Clin Sci (Lond), 2016, 130(17): 1545-1558. DOI:10.1042/CS20160077
[17] Pun PB, Lu J, Moochhala S. Involvement of ROS in BBB dysfunction[J]. Free Radic Res, 2009, 43(4): 348-364. DOI:10.1080/10715760902751902
[18] Huang CF, Hsu CJ, Liu SH, et al. Neurotoxicological mechanism of methylmercury induced by low-dose and long-term exposure in mice: oxidative stress and down-regulated Na+/K(+)-ATPase involved[J]. Toxicol Lett, 2008, 176(3): 188-197. DOI:10.1016/j.toxlet.2007.11.004
[19] Schreibelt G, Kooij G, Reijerkerk A, et al. Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling[J]. FASEB J, 2007, 21(13): 3666-3676. DOI:10.1096/fj.07-8329com
[20] Kahles T, Luedike P, Endres M, et al. NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke[J]. Stroke, 2007, 38(11): 3000-3006. DOI:10.1161/STROKEAHA.107.489765
[21] Sun HJ, Zhao MX, Ren XS, et al. Salusin-beta Promotes Vascular Smooth Muscle Cell Migration and Intimal Hyperplasia After Vascular Injury via ROS/NFkappaB/MMP-9 Pathway[J]. Antioxid Redox Signal, 2016, 24(18): 1045-1057. DOI:10.1089/ars.2015.6475
[22] Zhang R, Xu M, Wang Y, et al. Nrf2-a Promising Therapeutic Target for Defensing Against Oxidative Stress in Stroke[J]. Mol Neurobiol, 2017, 54(8): 6006-6017. DOI:10.1007/s12035-016-0111-0
[23] Allen CL, Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke[J]. Int J Stroke, 2009, 4(6): 461-470. DOI:10.1111/j.1747-4949.2009.00387.x
[24] Liang Y, Li J, Lin Q, et al. Research progress on signaling pathway-associated oxidative stress in endothelial cells[J]. Oxid Med Cell Longev, 2017, 2017: 7156941. DOI:10.1155/2017/7156941
[25] Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress[J]. J Biol Chem, 2009, 284(20): 13291-13295. DOI:10.1074/jbc.R900010200
[26] 危静, 吴建跃, 方蓉, 等. Nrf2/ARE信号系统在黄体酮对急性脑创伤多效神经保护中的作用[J]. 中华急诊医学杂志, 2016, 25(12): 1255-1259. DOI:10.3760/cma.j.issn.1671-0282.2016.12.009
[27] Sihvola V, Levonen AL. Keap1 as the redox sensor of the antioxidant response[J]. Arch Biochem Biophys, 2017, 617: 94-100. DOI:10.1016/j.abb.2016.10.010
[28] Sykiotis GP, Bohmann D. Stress-activated cap' n' collar transcription factors in aging and human disease[J]. Sci Signal, 2010, 3(112): e3. DOI:10.1126/scisignal.3112re3
[29] Ooi BK, Goh BH, Yap WH. Oxidative stress in cardiovascular diseases: involvement of nrf2 antioxidant redox signaling in macrophage foam cells formation[J]. Int J Mol Sci, 2017, 18(11): pii: E2336. DOI:10.3390/ijms18112336
[30] Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism[J]. Trends Biochem Sci, 2014, 39(4): 199-218. DOI:10.1016/j.tibs.2014.02.002
[31] Canning P, Sorrell FJ, Bullock AN. Structural basis of Keap1 interactions with Nrf2[J]. Free Radic Biol Med, 2015, 88(Pt B): 101-107. DOI:10.1016/j.freeradbiomed.2015.05.034
[32] Tebay LE, Robertson H, Durant ST, et al. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease[J]. Free Radic Biol Med, 2015, 88(PtB): 108-146. DOI:10.1016/j.freeradbiomed.2015.06.021
[33] Wang CF, Wang ZY, Li JY. Dual protective role of HO-1 in transplanted liver grafts: a review of experimental and clinical studies[J]. World J Gastroenterol, 2011, 17(26): 3101-3108. DOI:10.3748/wjg.v17.i26.3101
[34] Ryter SW, Alam J, Choi AM. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications[J]. Physiol Rev, 2006, 86(2): 583-650. DOI:10.1152/physrev.00011.2005
[35] Gong P, Cederbaum AI, Nieto N. Heme oxygenase-1 protects HepG2 cells against cytochrome P450 2E1-dependent toxicity[J]. Free Radic Biol Med, 2004, 36(3): 307-318. DOI:10.1016/j.freeradbiomed.2003.10.017
[36] Nitti M, Piras S, Brondolo L, et al. Heme oxygenase 1 in the nervous system: does it favor neuronal cell survival or induce neurodegeneration?[J]. Int J Mol Sci, 2018, 19(8). DOI:10.3390/ijms19082260
[37] Chen T, Liu W, Chao X, et al. Salvianolic acid B attenuates brain damage and inflammation after traumatic brain injury in mice[J]. Brain Res Bull, 2011, 84(2): 163-168. DOI:10.1016/j.brainresbull.2010.11.015
[38] Waza AA, Hamid Z, Ali S, et al. A review on heme oxygenase-1 induction: is it a necessary evil[J]. Inflamm Res, 2018, 67(7): 579-588. DOI:10.1007/s00011-018-1151-x
[39] Alam J, Igarashi K, Immenschuh S, et al. Regulation of heme oxygenase-1 gene transcription: recent advances and highlights from the International Conference (Uppsala, 2003) on Heme Oxygenase[J]. Antioxid Redox Signal, 2004, 6(5): 924-933. DOI:10.1089/ars.2004.6.924
[40] Loboda A, Damulewicz M, Pyza E, et al. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism[J]. Cell Mol Life Sci, 2016, 73(17): 3221-3247. DOI:10.1007/s00018-016-2223-0
[41] Singh D, Reeta KH, Sharma U, et al. Neuro-protective effect of monomethyl fumarate on ischemia reperfusion injury in rats: Role of Nrf2/HO1 pathway in peri-infarct region[J]. Neurochem Int, 2019, 126: 96-108. DOI:10.1016/j.neuint.2019.03.010
[42] Wakabayashi N, Itoh K, Wakabayashi J, et al. Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation[J]. Nat Genet, 2003, 35(3): 238-245. DOI:10.1038/ng1248
[43] Tong KI, Kobayashi A, Katsuoka F, et al. Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism[J]. Biol Chem, 2006, 387(10/11): 1311-1320. DOI:10.1515/BC.2006.164
[44] Eggler AL, Small E, Hannink M, et al. Cul3-mediated Nrf2 ubiquitination and antioxidant response element (ARE) activation are dependent on the partial molar volume at position 151 of Keap1[J]. Biochem J, 2009, 422(1): 171-180. DOI:10.1042/BJ20090471
[45] Chen B, Lu Y, Chen Y, et al. The role of Nrf2 in oxidative stress-induced endothelial injuries[J]. J Endocrinol, 2015, 225(3): R83-99. DOI:10.1530/JOE-14-0662
[46] Fuse Y, Kobayashi M. Conservation of the Keap1-Nrf2 system: an evolutionary journey through stressful space and time[J]. molecules, 2017, 22(3): pii: E436. DOI:10.3390/molecules22030436
[47] Wei Y, Gong J, Yoshida T, et al. Nrf2 has a protective role against neuronal and capillary degeneration in retinal ischemia-reperfusion injury[J]. Free Radic Biol Med, 2011, 51(1): 216-224. DOI:10.1016/j.freeradbiomed.2011.04.026
[48] Alfieri A, Srivastava S, Siow RC, et al. Targeting the Nrf2-Keap1 antioxidant defence pathway for neurovascular protection in stroke[J]. J Physiol, 2011, 589(17): 4125-4136. DOI:10.1113/jphysiol.2011.210294
[49] Fang Y, Liu X, Zhao L, et al. RhGLP-1 (7-36) protects diabetic rats against cerebral ischemia-reperfusion injury via up-regulating expression of Nrf2/HO-1 and increasing the activities of SOD[J]. Korean J Physiol Pharmacol, 2017, 21(5): 475-485. DOI:10.4196/kjpp.2017.21.5.475
[50] Alfieri A, Srivastava S, Siow RC, et al. Targeting the Nrf2-Keap1 antioxidant defence pathway for neurovascular protection in stroke[J]. J Physiol, 2011, 589(17): 4125-4136. DOI:10.1113/jphysiol.2011.210294
[51] Rojo AI, Innamorato NG, Martin-Moreno AM, et al. Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson' s disease[J]. Glia, 2010, 58(5): 588-598. DOI:10.1002/glia.20947
[52] Son TG, Camandola S, Arumugam TV, et al. Plumbagin, a novel Nrf2/ARE activator, protects against cerebral ischemia[J]. J Neurochem, 2010, 112(5): 1316-1326. DOI:10.1111/j.1471-4159.2009.06552.x
[53] Lei X, Lei L, Zhang Z, et al. Neuroprotective effects of lycopene pretreatment on transient global cerebral ischemiareperfusion in rats: The role of the Nrf2/HO1 signaling pathway[J]. Mol Med Rep, 2016, 13(1): 412-418. DOI:10.3892/mmr.2015.4534
[54] Lou J, Cao G, Li R, et al. beta-Caryophyllene Attenuates Focal Cerebral Ischemia-Reperfusion Injury by Nrf2/HO-1 Pathway in Rats[J]. Neurochem Res, 2016, 41(6): 1291-1304. DOI:10.1007/s11064-016-1826-z
[55] Hu Y, Duan M, Liang S, et al. Senkyunolide I protects rat brain against focal cerebral ischemia-reperfusion injury by up-regulating p-Erk1/2, Nrf2/HO-1 and inhibiting caspase 3[J]. Brain Res, 2015, 1605: 39-48. DOI:10.1016/j.brainres.2015.02.015
[56] Ding Y, Chen M, Wang M, et al. Posttreatment with 11-Keto-beta-Boswellic Acid Ameliorates Cerebral Ischemia-Reperfusion Injury: Nrf2/HO-1 Pathway as a Potential Mechanism[J]. Mol Neurobiol, 2015, 52(3): 1430-1439. DOI:10.1007/s12035-014-8929-9