脓毒症(sepsis)是机体对感染的反应失调而导致危及生命的器官功能障碍[1]。20年来,虽然对其发病机制与临床规律的研究取得长足进步[2],但其病死率依然居高不下。国内有研究报道外科ICU中严重脓毒症发生率为8.68%,病死率为48.7%[3]。因此脓毒症演变的关键环节及病理生理机制值得深入研究,以期探索新的干预途径[4]。
ILTs(免疫球蛋白样转录物),又名白细胞免疫球蛋白样受体(LILRs)、单核/巨噬细胞免疫球蛋白样受体(MIRs)或CD85,是多基因家族成员,编码基因位于人染色体19q13.4[5]。其中ILT4主要表达于外周血单核/巨噬细胞,为一跨膜蛋白,长胞浆尾含2~4个免疫受体酪氨酸抑制基序(ITIMs),通过招募蛋白酪氨酸磷酸酶(SHP)传递抑制信号[6]。
本研究拟观察小鼠脓毒症模型中单核细胞表达ILT4的生物学行为和效应,以及对于预后的影响,以探讨ILT4在脓毒症免疫靶向治疗中的临床价值。
1 材料与方法 1.1 动物BALB/c ILT4+/+ (WT)、BALB/c ILT4-/-雄性小鼠各52只(25~30 g;8同龄)。BALB/c (WT)小鼠购自中科院上海实验动物中心,BALB/c ILT4-/-小鼠委托联科生物公司敲除ILT4基因并传代、鉴定。
1.2 CLP模型制作[7]动物术前禁食12 h;10 %水合氯醛0.5 ml/100 g体质量腹腔注射麻醉;作腹部正中切口1.5 cm,游离盲肠;距盲肠游离端3/4处用4号线结扎,21 G针头在结扎端中点沿肠系膜纵轴方向贯通穿孔,两穿刺孔各挤出肠内容物一小滴,回纳肠管于腹腔,逐层间断缝合关闭腹腔;术后立即皮下注射37 ℃生理盐水5 mL/100 g;12 h昼夜节律,给予自由进食饮水。
1.3 标本采集术后0、6、12、24 h经心脏穿刺获取血液标本,室温下静置20 min,离心(2 500 r/min,20 min)抽取上清液血清,于-20 ℃保存备用;另24 h全血标本经EDTA抗凝,即刻行流式检测。
1.4 单核细胞ILT4、MHC-Ⅱ流式检测50 μL EDTA抗凝血,裂解红细胞、洗涤后制成细胞悬液(~1×108个/ml)。按试剂说明逐次荧光标记CD14(APC-CD14单抗1 μL、美国eBioscience公司)、ILT4(PE-ILT4单抗2 μL、美国eBioscience公司)、MHC-Ⅱ(FITC-MHC-Ⅱ单抗2 μL、美国eBioscience公司),室温孵育后,用流式细胞仪(德国MACSQuant公司)定量检测单核细胞ILT4、MHC-Ⅱ。
1.5 ELISA检测血清IL-6、TNF-α浓度取各份血清标本50 μL点样至ELISA平板小孔,按试剂盒(奥地利Bender公司)说明逐次加入缓冲液、生物素化的抗小鼠IL-6或TNF-α抗体、辣根过氧化物酶(HRP)标记的Streptavidin及TMB底物振荡、室温孵育,充分显色后加入终止液终止反应,立即于Multiskan Ascent酶标仪(芬兰Labsystems公司)450 nm波长(参照波长650 nm)下读取吸光度值,经由标准曲线(试剂盒自带标准样品倍比稀释后检测描记绘制)计算浓度。
1.6 生存预后观察BALB/c ILT4+/+ (WT)、BALB/c ILT4-/-两组各20只小鼠,CLP建模术后每12 h记录各组小鼠生存数,记录至168 h。
1.7 统计学方法计量资料以均数±标准差(x±s)表示,应用SPSS 18.0统计软件成组t检验、Two-Way ANOVA方法进行统计分析,以P<0.05为差异具有统计学意义;应用Cox-Mantel log-rank和Breslow tests方法对生存率进行统计分析,以P<0.05为差异具有统计学意义。
2 结果 2.1 脓毒症时单核细胞高表达ILT4CLP术后24 h脓毒症小鼠外周单核细胞高度表达ILT4分子[(1 292.00 ± 143.70) vs. (193.50 ± 52.54), t=20.31, P<0.05)],见图 1。
![]() |
aP<0.05,n=8 图 1 CLP术后24 h单核细胞表达ILT4强度 Figure 1 ILT4 fluorescence intensity in monocytes 24 h after CLP |
|
CLP术后24 h较野生型(WT)组ILT4-/-小鼠外周单核细胞表达MHC-Ⅱ比率明显增高[(49.38 ±5.66)% vs. (24.25± 6.76)%, t=8.07, P<0.05)],见图 2。
![]() |
aP<0.05,n=8 图 2 CLP术后24 h表达MHC-Ⅱ单核细胞的比率 Figure 2 Percentage of monocytes expressing MHC-Ⅱ 24 h after CLP |
|
CLP术后TNF-α血清浓度呈单向曲线样变化,前6 h增高明显[(53.13 ±5.49) vs. (24.50± 4.57), F=110.90, P<0.05)]、12 h恢复至术前水平,而ILT4敲除后对TNF-α表达无显著性干扰[(50.88 ±6.38) vs. (53.13 ±5.49), F= 0.31, P>0.05)] (图 3A)。CLP术后24 h血清IL-6显著增高[(470.75±88.03) vs. (54.25± 20.04), F=163.20, P<0.05)],ILT4敲除后很大程度的抑制这一趋势[(241.25 ± 45.10) vs. (470.75±88.03), F= 71.42, P<0.05)],见图 3B。
![]() |
aP<0.05,n=8 图 3 CLP术后0、6、12、24 h血清TNF-α (A)、IL-6(B)浓度变化 Figure 3 Serum TNF-α (A), IL-6 (B) concentrations (pg/mL) at 0, 6, 12, and 24 h |
|
ILT4-/-小鼠CLP术后生存率较WT明显增加(χ2= 12.20, P<0.05) (图 4)。
![]() |
aP<0.05,n=20 图 4 CLP术后Kaplan-Meier生存曲线,每12 h记录各组小鼠生存数(记录至168 h) Figure 4 Kaplan-Meier survival curves of different groups of mice showing relative survival in different groups of mice every 12 h for a total 168 h |
|
脓毒症是机体和病原体相互作用而导致的临床综合征,发病机制复杂,涉及感染、炎症、免疫、凝血等一系列问题[8]。脓毒症的不良预后并非完全由病原体及其毒素直接损害所致,宿主自身反应在病理损伤中同样扮演了重要角色。机体通过模式识别受体(pattern-recognition receptors,PRRs)和病原体相互作用启动固有免疫反应,同时这些PRRs也可以与一些危险相关分子模式(danger-associated molecular patterns,DMAPs)作用,导致过度炎症反应及免疫麻痹[9-10]。其中单核细胞所表现出的特殊生物行为引人关注[11]。
通常按单核细胞的免疫表型和生物学行为大致将其分为两大类[12]。CD14++CD16-“classical monocytes”,正常情况下为优势亚群,健康人体内占单核细胞总数的90%~95%。LPS刺激时表现为较活跃的吞噬能力并可合成分泌IL-10[13],这通常对机体是有益的;CD14+CD16+“non-classical monocytes”,健康人体内占单核细胞总数的5%~10%。LPS可诱导其大量分泌TNF-α[13-14],感染和脓毒症时该细胞亚群明显增加且和疾病不良预后呈正相关[15]。本研究发现脓毒症时外周血单核细胞特异性高表达ILT4,且与血清IL-6高水平、单核细胞MHC-Ⅱ低表达率相关,导致不良预后,但还不明确该细胞群的具体属性。
本研究发现CLP术后24 h脓毒症小鼠外周单核细胞高度表达ILT4分子[(1 292.00 ± 143.70) vs. (193.50 ± 52.54), P<0.05)](图 1)。敲除该基因后脓毒症小鼠的病死率明显降低。针对该现象,本实验检测了相关的炎性介质及呈递抗原,以研究ILT4潜在的病理机制。
本研究中LP术后24 h血清IL-6显著增高[(470.75±88.03) vs. (54.25± 20.04), P<0.05)],ILT4敲除后很大程度的抑制这一趋势[(241.25 ± 45.10) vs. (470.75±88.03), P<0.05)] (图 3B),同时也降低病死率。这一结论与Gomez等[16]的临床研究是一致的。更早的研究提示血清IL-6>1 000 pg/mL时脓毒症患者的病死率为56%,而<1 000 pg/mL组的病死率仅为40%[17]。
但ILT4对另一主要的炎性介质TNF-α表达无显著性干扰[(50.88 ±6.38) vs. (53.13 ±5.49), P>0.05)](图 3A),这一实验结果让人意外。通常认为脓毒症时高TNF-α水平与高病死率相关[18]。或能解释为作为超早期的炎性介质TNF-α不受ILT4调控,且较单一的炎性介质或细胞因子而言脓毒症的不良预后与过度炎症反应的持续性关系更为密切。
同时也发现CLP术后24 h较WT组ILT4-/-小鼠外周单核细胞表达MHC-Ⅱ比率明显增高[(49.38 ±5.66)% vs. (24.25± 6.76)%, P<0.05)](图 2)。MHC-Ⅱ传递细胞外部的信息,例如组织中有细菌侵入,则巨噬细胞进行吞食后,把细菌碎片利用MHC-Ⅱ提供给辅助性T细胞,启动免疫反应,因此其表达的高低在机体应答感染时至关重要。对应人类的同类分子HLA-DR,既往的研究提示单核细胞HLA-DR表达<40%可作为脓毒症免疫状态及预后指标的界值[19]。苏磊等在ICU脓毒症患者的研究中同样证实,单核细胞HLA-DR<30%者全部死亡,<40%者病死率80%,这与该实验所观察到的结果是一致的。
[1] | Singer M, Deutsehman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. DOI:10.1001/jama.2016.0287 |
[2] | 苏磊, 徐秋林. 精准医学时代的脓毒症研究[J]. 中华急诊医学杂志, 2016, 25(2): 133-138. DOI:10.3760/cma.j.issn.1671-0282.2016.02.001 |
[3] | Cheng B, Xie G, Yao S, et al. Epidemiology of severe sepsis in critically ill surgical patients in ten university hospitals in China[J]. Crit Care Med, 2007, 35(11): 2538-2546. DOI:10.1097/01.CCM.0000284492.30800.00 |
[4] | 何小军, 马岳峰. 脓毒症:我们能做些什么?[J]. 中华急诊医学杂志, 2017, 26(5): 483-487. DOI:10.3760/cma.j.issn.1671-0282.2017.05.001 |
[5] | Barrow AD, Trowsdale J. The extended human leukocyte receptor complex:diverse ways of modulating immune responses[J]. Immun Rev, 2008, 224(1): 98-123. DOI:10.1111/j.1600-065X.2008.00653.x |
[6] | Borges L, Cosman D. LIRs/ILTs/MIRs. inhibitory and stimulatory Ig-superfamily receptors expressed in myeloid and lymphoid cells[J]. Cytok Growth Factor Rev, 2000, 11(3): 209-217. DOI:10.1016/S1359-6101(00)00007-1 |
[7] | Rittirsch D, Huberlang MS, Flierl MA, et al. Immunodesign of experimental sepsis by cecal ligation and puncture[J]. Nat Prot Erec Res, 2009, 4(1): 31-36. DOI:10.1038/nprot.2008.214 |
[8] | Cohen J. The immunopathogenesis of sepsis[J]. Nature, 2002, 420(6917): 885-891. DOI:10.1038/nature01326 |
[9] | Van der Poll T, Opal SM. Host-pathogen interactions in sepsis[J]. Lancet Infectious Diseases, 2008, 8(1): 32-43. DOI:10.1016/S1473-3099(07)70265-7 |
[10] | Anas AA, Wiersinga WJ, Vos AFD, et al. Recent insights into the pathogenesis ofbacterial sepsis[J]. Neth J Med, 2010, 4: 147-150. |
[11] | Annane D, Bellissant E, Cavaillon JM. Septic shock[J]. Lancet, 2005, 365(9453): 63-78. DOI:10.1016/S0140-6736(04)17667-8 |
[12] | Ziegler-Heitbrock L, Ancuta P, Crowe S, et al. Nomenclature ofmonocytes and dendritic cells in blood[J]. Blood, 2010, 116(16): e74-80. DOI:10.1182/blood-2010-02-258558 |
[13] | Auffray C, Sieweke MH, Geissmann F. Blood monocytes:development, heterogeneity, and relationship with dendritic cells[J]. Ann Rev Immun, 2009, 27(1): 669-692. DOI:10.1146/annurev.immunol.021908.132557 |
[14] | Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties[J]. Immunity, 2003, 19(1): 71-82. DOI:10.1016/S1074-7613(03)00174-2 |
[15] | Pinheiroda Silva F, Aloulou M, Skurnik D, et al. CD16 promotes Escherichia coli sepsis through an FcR gamma inhibitory pathway that prevents phagocytosis and facilitates inflammation[J]. Nat Med, 2007, 13(11): 1368-1374. DOI:10.1038/nm1665 |
[16] | Gomez HG, Gonzalez SM, Londö JM, et al. Immunological characterization of compensatory anti-inflammatory response syndrome in patients with severe sepsis:A longitudinal study[J]. Crit Care Med, 2014, 42(4): 771-780. DOI:10.1097/CCM.0000000000000100 |
[17] | Oberhoffer M, Karzai W, Meier-Hellmann A, et al. Sensitivity and specificity of various markers of inflammation for the prediction of tumor necrosis factor-alpha and interleukin-6 in patients with sepsis[J]. Crit Care Med, 1999, 27(9): 1814-1818. DOI:10.1002/chin.199923285 |
[18] | Waage A, Halstensen A, Espevik T. Association between tumour necrosis factor in serum and fatal outcome in patients with meningococcal disease[J]. Lancet, 1987, 1(8529): 355-357. DOI:10.1016/S0140-6736(87)91728-4 |
[19] | Lekkou A, Karakantza M, Mouzaki A, et al. Cytokine production and monocyte HLA-DR expression as predictors of outcome for patients with community-acquired severe infections[J]. Clin Diag Lab Immun, 2004, 11(1): 161-167. DOI:10.1128/CDLI.11.1.161-167.2004 |