脓毒症是感染引起的全身炎症反应综合征,临床上证实有细菌存在或有高度可疑感染灶。细胞因子的瀑布样反应,导致促炎/抗炎介质之间的失衡,是脓毒症发生发展的主要病理机制之一。脓毒症可进一步发展为严重脓毒症/脓毒性休克,甚至多器官功能衰竭,近年来,尽管临床医生尝试多种治疗手段[1-2],严重脓毒症病死率仍达30%~50%[3]。
高容量血液滤过(High volume hemofiltration, HVHF),也称高通量血液滤过,或称强化肾脏替代治疗,是在“常规”容量血液滤过基础上,衍生出一种新的血液净化疗法[4]。HVHF具有清除炎症介质,维持促炎/抗炎介质间平衡、重建免疫稳态、改善氧合、血流动力学及器官功能状态、稳定内环境和降低病死率等作用,已广泛应用于脓毒症及多器官衰竭患者的救治[5]。同时,HVHF治疗中亦存在诸多问题[6]。本文对HVHF在脓毒症患者的临床应用及进展做一综述。
1 HVHF概况1977年,Kramer等[7]首先将血液滤过应用于临床。1992年,Grootendorst等[8]提出HVHF概念。2000年,Ronco等[9]首次描述HVHF可降低危重症患者病死率。
HVHF在持续静-静脉血液滤过(continuous veno-venous hemofiltration, CVVH) 的基础上发展起来。CVVH置换剂量达25~30 mL/(kg·h) 时,可清除中、小分子物质,稳定内环境,该剂量称为标准(常规) 剂量或肾脏替代剂量,适用于急、慢性肾功能衰竭的治疗。对于危重病患者,尤其是脓毒症,如要降低病死率,需提高置换剂量[9]。此为HVHF的理论基础。然而,置换剂量达到多少可视为HVHF,国际上尚无统一的标准[5]。近期学者就HVHF的标准达成共识(Pardubice共识):即CVVH时置换剂量达50~70 mL/(kg·h);或首先以100~120 mL/(kg·h) 的置换剂量进行CVVH 4~8 h,然后改为肾脏替代剂量[10]。
HVHF明显增加了治疗成本和护士医护人员的工作量。近年来,出现了脉冲式(间歇式) 高容量血液滤过(pulse high volume hemofiltration, PHVHF) 的概念:即每日首先以较大的置换剂量[通常超过85 mL/(kg·h)]进行CVVH,然后改为较小的替代剂量[如35 mL/(kg·h)]继续治疗。PHVHF与HVHF相比,在保留HVHF治疗益处的同时,降低治疗成本及医护人员工作量,在临床上更具有可行性[11-12]。
2 HVHF治疗脓毒症的优势 2.1 清除炎症介质炎症细胞因子是引起失控性炎症反应和组织损害的关键介质[13]。HVHF治疗脓毒症最主要的病理生理机制,可能是非特异的清除血液中炎症细胞因子,缓解患者急性状态,为临床有效治疗创造条件及赢得时间[14-15]。
但是,有学者对脓毒症患者进行HVHF治疗后发现,患者血流动力学及存活率明显改善,而血中细胞因子水平并没有明显降低,提示有其他治疗机制[16]。Li等[17]发现,HVHF组心输出量、每搏输出量及平均动脉压明显改善,两组间血中肿瘤坏死因子(tumor necrosis factor-α, TNF-α) 水平差异无统计学意义,但HVHF组心肌细胞内TNF-α明显下降。推测血流动力学的改善,可能是HVHF降低了心肌细胞内,而非血中的TNF-α水平所致。Honoré等[10]Di Carlo JV等[18]提出“介质传递假说”,即HVHF时输入大量(48~72 L/d) 置换液,显著增加淋巴回流(正常状态20~80倍),提高组织间质和血液介质/细胞因子交换,改善淋巴细胞功能,间接清除血中炎症介质。
血液灌流(hemoperfusion, HP) 通过活性炭或树脂,吸附血液中大分子及蛋白结合率高的炎症介质,其安全性和有效性得到验证,已应用于急、危重病患者的治疗[19-21]。HP序贯HVHF治疗脓毒症,能更有效清除细胞因子,改善患者临床症状[22]。Liu等[23]将患者随机分为两组,治疗组采取HP 2h+ HVHF 10 h[置换剂量40~65 mL/(kg·h)],对照组采取HVHF 12 h[(置换剂量与对照组相同)],连续治疗3 d。结果发现治疗组患者第5天时血TNF-α、白细胞介素-1β(Interleukin-1β, IL-1β) 和IL-6等水平均低于对照组。
2.2 改善血流动力学及氧合HVHF不仅清除炎症介质,尚能清除心肌抑制因子,改善血流动力学状态[24-25]。Grootendorst等[8]发现,HVHF (6 L/h) 可提高右室射血分数、心输出量及平均动脉压。Boussekey等[26]指出,相对于35 mL/(kg·h) 的置换剂量,65 mL/(kg·h) 组患者在维持平均动脉压>65 mmHg (1 mmHg=0.133 kPa) 的情况下,明显减少使用血管收缩药物。有学者提出,HVHF明显降低肺毛细血管通透性,减少血管外肺水,改善脓毒症患者肺功能,提高氧合指数[27]。
然而,也有学者认为HVHF未有效改善脓毒症患者的血流动力学状态,甚至在治疗早期,降低心输出量,增加全身血管阻力[14, 22, 28]。
2.3 改善预后多数学者认为,HVHF可改善脓毒症患者预后[16, 27, 29]。遗憾的是,Joannes-Boyau等[22]学者在欧洲3个国家18个ICU,进行了迄今为止规模最大的多中心、随机对照的IVOIRE研究后指出,与35 mL/(kg·h) 相比,70 mL/(kg·h) 的置换剂量在降低患者28 d病死率、改善血流动力学及器官功能和减少住院时间等指标上并无优势。此与Clark等[30]及Zhang等[31]研究结果相似。
究其原因,首先,脓毒症是以炎症介质的大量生成为基本特征,使用传统滤器的HVHF不能有效、持续地清除炎症介质[32];其次,及时和足量的抗菌素是治疗脓毒症的关键,HVHF清除了大量的抗菌素,使其不能达到有效的血药浓度,导致治疗失败和增加不良预后的风险[22];再者,HVHF时清除多种微量元素,致电解质紊乱,营养物质丢失,抵消了其正性治疗作用[33]。
3 HVHF治疗脓毒症存在的问题 3.1 HVHF的剂量选择置换剂量超过35 mL/(kg·h),可被认为HVHF。早期试验表明,置换剂量越高,血流动力学改善程度越高[34]。提示以35 mL/(kg·h) 作为截点,似乎太低,临床上一般需达到50~70 mL/(kg·h);如进行PHVHF,可选择100~120 mL/(kg·h)[10]。但是,无限制的增加置换剂量,非但不能改善患者预后[31, 35],反而增加护士工作量和患者经济负担[36]。
3.2 HVHF治疗时机及滤器选择关于何时对脓毒症患者进行HVHF治疗,目前尚无统一的标准[37]。Vidal等[34]对心外科术后伴有急性肾衰竭及心源性休克的患者研究后发现,与死亡组相比,术后实施HVHF越早[(16±15) h vs. (34±27) h],术后72 h内实施HVHF越长[(58±13) h vs. (34±18) h],患者存活率越高。Honore等[29]认为,脓毒症患者开始HVHF治疗时间越早,存活率越高。提示应尽早开始HVHF治疗。
滤器是决定HVHF治疗效果的重要因素之一。某些特殊材质的滤[(如聚丙烯腈(polyacrylonitrile) 和聚甲基丙烯酸甲酯(polymethylmethacrylate) 膜]能更有效清除炎症介质,改善血流动力学状态,降低病死率[38-39]。相对于高通量(high-flux, HF,滤器孔径<0.01 μm),高截留分子量(high-molecular-weight cutoff, HCO,滤器孔径<0.02 μm) 的滤器,似乎更有效清除细胞因子[5]。Haase等[40]对脓毒症患者治疗后发现,与HF组相比,HCO组患者IL-6、IL-8和IL-10的水平出现具有统计学意义的下降。Naka等[41]认为,HCO能高效清除晚期炎症介质-高迁移率蛋白-1。
吸附是HVHF清除炎症介质的重要机制之一,理论上滤器具饱和吸附的时限。超出此时限,滤器吸附能力明显降低。HVHF有效治疗的时间,多在开始6 h以内[26]。IVOIRE研究出现阴性结果,可能与较低的滤器更换频率(48 h) 有关[22]。至于HVHF更换滤器的最佳间隔,尚无此方面的研究。
3.3 HVHF时的用药抗生素在治疗脓毒症中发挥重要作用。HVHF对不同抗生素清除差异很大:如显著清除美罗培南和万古霉素,明显影响其血药浓度;部分清除莫西沙星,但不影响其有效的治疗浓度[42-44]。如抗生素不能达到有效血药浓度或维持有效时间,非但不能产生预期的效果,反而易诱导产生耐药菌株。抗菌素的调整包括给药剂量及频率的调整。
临床医生须了解HVHF时各种药物的药代动力学和药效学变化。必要时监测血药浓度甚至组织浓度,并据此调整用药剂量,实现个体化治疗[45]。
3.4 HVHF的并发症低磷血症是HVHF较常见并发症。与25 mL/(kg·h) 置换剂量相比,HVHF[40 mL/(kg·h)]更容易发生低磷血(54% vs. 65%)[35]。其他的并发症包括心律失常、低钾血症、低体温、急性血栓性卒中、心肌梗死、大手术后出血、直肠出血、失衡综合征及脑水肿等[4, 22, 35]。
4 展望HVHF治疗脓毒症的机制尚未阐明,尚无足够证据支持HVHF能显著改善脓毒症患者预后。事实上,HVHF治疗脓毒症的研究,多来自于单中心、回顾性或小样本的动物实验或临床观察,不具备较强说服力。期待多中心、前瞻性及大样本临床研究[46]。PHVHF在保留HVHF治疗益处的同时,降低治疗成本及医护人员工作量,可能是以后研究的方向[11, 12, 16]。
[1] | Opal SM, Laterre PF, Francois B, et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial[J]. JAMA, 2013, 309(11): 1154-1162. DOI:10.1001/jama.2013.2194 |
[2] | Bernard GR, Francois B, Mira JP, et al. Evaluating the efficacy and safety of two doses of the polyclonal anti-tumor necrosis factor-α fragment antibody AZD9773 in adult patients with severe sepsis and/or septic shock: randomized, double-blind, placebo-controlled phase Ⅱb study[J]. Crit Care Med, 2014, 42(3): 504-511. DOI:10.1097/CCM.0000000000000043 |
[3] | Stevenson EK, Rubenstein AR, Radin GT, et al. Two decades of mortality trends among patients with severe sepsis: a comparative Meta-analysis[J]. Crit Care Med, 2014, 42(3): 625-631. DOI:10.1097/CCM.0000000000000026 |
[4] | Bellomo R, Cass A, Cole L, et al. The relationship between hypophosphataemia and outcomes during low-intensity and high-intensity continuousrenal replacement therapy[J]. Crit Care Resusc, 2014, 16(1): 34-41. |
[5] | Rimmelé T, Kellum JA. Clinical review: Blood purification for sepsis[J]. Cri Care, 2011, 15: 205. DOI:10.1186/cc9411 |
[6] | Schiffl H. The dark side of high-intensity renal replacement therapy of acute kidney injury in critically ill patients[J]. Int Urol Nephrol, 2010, 42(2): 435-440. DOI:10.1007/s11255-010-9733-8 |
[7] | Kramer P, Wigger W, Rieger J, et al. Arteriovenous haemofi ltration: a new and simple method for treatment of over-hydrated patients resistant to diuretics[J]. Klin Wochenschr, 1977, 55: 1121-1122. DOI:10.1007/BF01477940 |
[8] | Grootendorst AF, van Bommel EF, van der Hoven B, et al. High volume hemofiltration improves right ventricular function in endotoxin-induced shock in the pig[J]. Intensive Care Med, 1992, 18(4): 235-240. DOI:10.1007/BF01709839 |
[9] | Ronco C, Bellomo R, Homel P, et al. Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial[J]. Lancet, 2000, 356: 26-30. DOI:10.1046/j.1525-139X.2001.014003233.x |
[10] | Honoré PM, Jacobs R, Boer W, et al. New insights regarding rationale, therapeutic target and dose of hemofiltration and hybrid therapies in septic acute kidney injury[J]. Blood Purif, 2012, 33(1/3): 44-51. DOI:10.1159/000333837 |
[11] | Ratanarat R, Brendolan A, Ricci Z, et al. Pulse high-volume hemofiltration in critically ill patients: a new approach for patients with septic shock[J]. Semin Dial, 2006, 19(1): 69-74. DOI:10.1111/j.1525-139X.2006.00121 |
[12] | Rimmelé T, Wey PF, Bernard N, et al. Hemofiltration with the Cascade system in an experimental porcine model of septic shock[J]. Ther Apher Dial, 2009, 13(1): 63-70. DOI:10.1111/j.1744-9987.2009.00655.x |
[13] | Machado JR, Soave DF, da Silva MV, et al. Neonatal Sepsis and Inflammatory Mediators[J]. Mediators Inflamm, 2014, 2014: 269681. DOI:10.1155/2014/269681 |
[14] | De Vriese AS, Colardyn FA, Philippe JJ, et al. Cytokine Removal during Continuous Hemofiltration in Septic Patients[J]. J Am Soc Nephrol, 1999, 10: 846-853. |
[15] | Peng Z, Pai P, Hong-Bao L, et al. The impacts of continuous veno-venous hemofiltration on plasma cytokines and monocyte human leukocyte antigen-DR expression in septic patients[J]. Cytokine, 2010, 50(2): 186-191. DOI:10.1016/j.cyto.2010.02.005 |
[16] | Peng ZY, Wang HZ, Carter MJ, et al. Acute removal of common sepsis mediators does not explain the effects of extracorporeal blood purification in experimental sepsis[J]. Kidney Int, 2012, 81(4): 363-369. DOI:10.1038/ki.2011.320 |
[17] | Li C, Zhang P, Cheng X, et al. High-volume hemofiltration reduces the expression of myocardial tumor necrosis factor-alpha in septic shock pigs[J]. Artif Organs, 2013, 37(2): 196-202. DOI:10.1111/j.1525-1594.2012.01536.x |
[18] | Di Carlo JV, A1exander SR. Hemofi1tration for cytokine-driven illnesses: the mediator delivery hypothesis[J]. Int J Artif Organs, 2005, 28: 777-786. |
[19] | 王力军, 余慕明, 柴艳芬. 血液灌流对急性中毒患者内环境影响的研究[J]. 中华急诊医学杂志, 2014, 23(11): 1214-1217. DOI:10.3760/cma.J.issn.1671-0282.2014.11.008 |
[20] | 王力军, 柴艳芬. 血液灌流技术在临床上的应用新进展[J]. 中国医师进修杂志, 2013, 36(15): 74-76. DOI:10.3760/cma.j.issn.1673-4904.2013.15.031 |
[21] | Basu R, Pathak S, Goyal J, et al. Use of a novel hemoadsorption device for cytokine removal as adjuvant therapy in a patient with septic shock with multi-organ dysfunction: A case study[J]. Indian Journal of Critical Care Medicine, 2014, 18(12): 822-824. DOI:10.4103/0972-5229.146321 |
[22] | Joannes-Boyau O, Honoré PM, Perez P, et al. High-volume versus standard-volume haemo ltration for septic shock patients with acute kidney injury (IVOIRE study): a multicentre randomized controlled trial[J]. Intensive Care Med, 2013, 39(9): 1535-1546. DOI:10.1007/s00134-013-2967-z |
[23] | Liu LY, Zhu YJ, Li XL, et al. Blood hemoperfusion with resin adsorption combined continuous veno-venous hemo ltration for patients with multiple organ dysfunction syndrome[J]. World J Emerg Med, 2012, 3(1): 44-48. DOI:10.5847/wjem.j.1920-8642.2012.01.008 |
[24] | 林荣海, 蒋永泼, 张胜, 等. 连续性血液净化治疗对脓毒症心肌抑制保护作用的研究[J]. 中华急诊医学杂志, 2016, 25(12): 1290-1293. DOI:10.3760/cma.j.issn.1671-0282.2016.12.017 |
[25] | Bellomo R, Lipcsey M, Calzavacca P, et al. Early acid-base and blood pressure effects of continuous renal replacement therapy intensity in patients with metabolic acidosis[J]. Intensive Care Med, 2013, 39(3): 429-436. DOI:10.1007/s00134-012-2800-0 |
[26] | Boussekey N, Chiche A, Faure K, et al. A pilot randomized study comparing high and low volume hemofiltration on vasopressor use in septic shock[J]. Intensive Care Med, 2008, 34(9): 1646-1653. DOI:10.1007/s00134-008-1127-3 |
[27] | 任宏生, 蒋进皎, 楚云峰, 等. 高容量血液滤过对感染性休克患者血管外肺水和肺泡-动脉间氧交换影响的研究[J]. 中华危重病急救医学, 2014, 26(9): 609-614. DOI:10.3760./cma.J.issn.2095-4352.2014.09.001 |
[28] | Sander A, Armbruster W, Sander B, et al. Hemofiltration increases IL-6 clearance in early systemic inflammatory response syndrome but does not alter IL-6 and TNF alpha plasma concentrations[J]. Intensive Care Med, 1997, 23(8): 878-884. DOI:10.1007/s001340050425 |
[29] | Honore PM, Jamez J, Wauthier M, et al. Prospective evaluation of short-term, high-volume isovolemic hemofiltration on the hemodynamic course and outcome in patients with intractable circulatory failure resulting from septic shock[J]. Crit Care Med, 2000, 28(11): 3581-3587. DOI:10.1097/00003246-200011000-00001 |
[30] | Clark E, Molnar AO, Joannes-Boyau O, et al. High-volume hemofiltration for septic acute kidney injury: a systematic review and meta-analysis[J]. Crit Care, 2014, 18(1): R7. DOI:10.1186/cc13184 |
[31] | Zhang P, Yang Y, Lv R, et al. Effect of the intensity of continuous renal replacement therapy in patients with sepsis and acute kidney injury: a single-center randomized clinical trial[J]. Nephrol Dial Transplant, 2012, 27(3): 967-973. DOI:10.1093/ndt/gfr486 |
[32] | Atan R, Crosbie D, Bellomo R. Techniques of extracorporeal cytokine removal: a systematic review of the literature[J]. Blood Purif, 2012, 33(1/3): 88-100. DOI:10.1159/000333845 |
[33] | Schiffl H, Lang SM. Severe acute hypophosphatemia during renal replacement therapy adversely affects outcome of critically ill patients with acute kidney injury[J]. Int Urol Nephrol, 2013, 45(1): 191-197. DOI:10.1007/s11255-011-0112-x |
[34] | Vidal S, Richebé P, Barandon L, et al. Evaluation of continuous veno-venous hemofiltration for the treatment of cardiogenic shock in conjunction with acute failure after cardiac surgery[J]. European Journal of Cardio-thoracic Surgery, 2009, 36: 572-579. DOI:10.1016/j.ejcts.2009.04.018 |
[35] | RENAL Replacement Therapy Study Investigators, Bellomo R, Cass A, et al. Intensity of continuous renal-replacement therapy in critically ill patients[J]. N Engl J Med, 2009, 361(17): 1627-1638. DOI:10.1056/NEJMoa0902413 |
[36] | Paterson AL, Johnston AJ, Kingston D, et al. Clinical and economic impact of a switch from high-to low-volume renal replacement therapy in patients with acute kidney injury[J]. Anaesthesia, 2014, 69(9): 977-982. DOI:10.1111/anae.12706 |
[37] | Payen D, Mateo J, Cavaillon JM, et al. Impact of continuous venovenous hemo ltration on organ failure during the early phsae of severe sepsis: a randomized controlled trail[J]. Crit Care Med, 2009, 37: 803-810. DOI:10.1097/CCM.0b013e3181962316 |
[38] | Rimmelé T, Assadi A, Cattenoz M, et al. High-volume haemofiltration with a new haemofiltration membrane having enhanced adsorption properties in septic pigs[J]. Nephrol Dial Transplant, 2009, 24: 421-427. DOI:10.1093/ndt/gfn518 |
[39] | Matsumura Y, Oda S, Sadahiro T, et al. Treatment of septic shock with continuous HDF using 2 PMMA hemofilters for enhanced intensity[J]. Int J Artif Organs, 2012, 35(1): 3-14. DOI:10.5301/ijao.5000044 |
[40] | Haase M, Bellomo R, Baldwin I, et al. Hemodialysis membrane with a high-molecular-weight cutoff and cytokine levels in sepsis complicated by acute renal failure: a phase 1 randomized trial[J]. Am J Kidney Dis, 2007, 50(2): 296-304. DOI:10.1053/j.ajkd.2007.05.003 |
[41] | Naka T, Haase M, Bellomo R. 'Super high-flux' or 'high cut-off' hemofiltration and hemodialysis[J]. Contrib Nephrol, 2010, 166: 181-189. DOI:10.1159/000314871 |
[42] | Bilgrami I, Roberts JA, Wallis SC, et al. Meropenem dosing in critically ill patients with sepsis receiving high-volume continuous venovenous hemoltration[J]. Antimicrobial Agent $ chemotherapy, 2010, 54(7): 2974-2978. DOI:10.1128/AAC.01582-09 |
[43] | Petejova N, Martinek A, Zahalkova J, et al. Vancomycin pharmacokinetics during high-volume continuous venovenous hemofiltration in critically ill septic patients[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2014, 158(1): 65-72. DOI:10.5507/bp.2012.092 |
[44] | 李莉, 史伟, 陈铁峰, 等. 间歇性高容量血液滤过对肾替代治疗患者血清莫西沙星药物浓度的影响[J]. 中国病理生理杂志, 2011, 27(5): 1008-1011. |
[45] | Paciullo CA, Harned KC, Davis GA, et al. Vancomycin Clearance in High-Volume Venovenous Hemofiltration[J]. Ann Pharmacother, 2013, 47: e14. DOI:10.1345/aph.1Q488 |
[46] | Xu X, Dai H, Jia C, et al. Extracorporeal blood therapy in sepsis and acute respiratory distress syndrome: the "purifying dream"[J]. Chin Med J (Engl), 2014, 127(24): 4263-4270. DOI:10.3760/cma.j.issn.0366-6999.20141869 |