中华急诊医学杂志  2016, Vol. 25 Issue (12): 1340-1343
miRNA在脓毒症中调控TLRs信号通路的研究进展
肖玲, 马渝     
400016 重庆,重庆医科大学附属第一医院重症医学科(肖玲); 400014 重庆,重庆市急救医疗中心ICU (马渝)
摘要: 脓毒症(sepsis)是指由感染引起的全身炎症反应综合征。在ICU中脓毒症是危重患者的主要死亡原因之一,并且其发病率和病死率在全球范围内逐年递增。据统计,在中国,脓毒症在ICU中的发病率为8.68%,病死率可高达44.7%。因此,脓毒症成为重症医学领域亟待攻克的难题之一。目前,脓毒症发病机制尚不清楚,主要与过度炎症反应和免疫功能紊乱有关。微小RNAs (miRNAs)作为重要的免疫调控因子,可通过TLRs/NF-κB信号通路参与固有免疫调控,在脓毒症发病过程中发挥重要作用。本文就脓毒症中miRNAs参与TLRs信号通路的研究进展作一综述。
关键词: 脓毒症     小分子RNA     信号通路     Toll样受体    
Research progress of miRNAs regulating TLRs signaling pathway in sepsis
Xiao Ling, Ma Yu     
Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, China (Xiao L); Department of ICU, Chongqing Emergency Medical Center, Chongqing 400014, China (Ma Y)
*Corresponding author: Ma Yu, Email: yr7964@sina.com.
Fund program: Key Project of Chongqing Municipal Health and Family Planning Commission (2016ZDXM030)
Abstract: Sepsis refers to the infection caused by systemic inflammatory response syndrome. Sepsis is one of the leading causes of death in critically ill patients in the ICU and its morbidity and mortality are increasing year by year globally. According to statistics, in China, the incidence of sepsis in ICU is 8.68% and the mortality rate can be as high as 44.7%, therefore, severe sepsis in the field of medicine to become one of the problems to be overcome. MicroRNAs (miRNAs) play an important role in the pathogenesis of sepsis through the TLRs / NF-κB signaling pathways, which play an important role in immune regulation. In this review, the progress of miRNAs involved in TLRs signaling pathway in sepsis is reviewed.
Key words: Sepsis     microRNA     Signaling pathways     TLRs    
1 miRNA与TLRs信号通路

MicroRNAs (miRNAs)是一类约由21~25个核苷酸组成的内源性非编码单链RNA,其主要通过与靶mRNA的3’端非转录区互补配对后,切割或抑制靶mRNA翻译,从而影响蛋白质的表达。近来许多miRNAs被证实可调节TLRs信号通路所涉及的分泌蛋白及调节分子,主要包括以下三个机制:(1)直接作用于TLRs信号通路中的组成元件;(2)直接激活TLRs;(3)其表达受TLRs调节[4]

2 脓毒症中的LPS-TLRs信号通路

Toll样受体(toll-like receptors, TLRs)是一类识别病原体相关分子模式(pathogen associatedmolecule patterns,PAMPs)的跨膜蛋白,在脓毒症抗炎免疫机制中起着重要作用。其中,TLR4是识别脂多糖(lipopolysaccharide,LPS)的关键识别受体,LPS释放入血后,迅速与LPS结合蛋白(LPS-binding protein, LBP)结合[5],通过糖基磷脂酰肌醇锚定于细胞膜与TLR4结合,经髓样分化因子(myeloid differentiation factor88, MyD88)依赖性或非依赖性途径[6]激活细胞内信号级联反应, 产生炎性介质,进一步发展为脓毒症,最终导致全身多器官功能障碍[7]

3 与脓毒症相关的miRNAs

miRNAs不仅直接参与调控抗炎/促炎动态平衡,还可通过直接调节TLRs信号通路中的某些关键分子来间接调节二者间的平衡。O’Connell等[8]发现,LPS处理单核细胞可刺激miR-155和miR-146的表达上调,miR-146a可作用于TLRS信号通路中的IRAK1激酶和TRAF6连接酶,抑制通路活化[9]。miR-155可作用于FADD, IKKβ, IKKε, 以及Ripk1等TLRs信号途径中的蛋白[10]等。由此可见,miRNAs在脓毒症发生发展过程中扮演的角色远比早前设想的更为重要。

3.1 miR-146a

miR-146a是最早证实与炎症相关的miRNAs之一。LPS处理单核细胞后,miR-146a可经由NF-κB的信号通路应答各种免疫介质时诱导[10-11], 于2 h后持续升高[12-14];而Wang等[15]发现脓毒症患者血清内miR-146a表达降低,这一差异现象有待进一步探讨。

miR-146可作用于心肌细胞内IRAK和TRAF6,抑制NF-κB活性以及炎症因子的产生,从而减轻脓毒症导致的心功能障碍[16];在肺组织中上调的miR-146a可抑制TNF-α的释放,减轻脓毒症致肺损伤的炎症反应[17]。Yang等[18]发现miR-146a通过负性调节TLR4从而调节氧化低密度脂蛋白(oxLDL)的累积及炎症反应。

3.2 miRNA-155

2006年Baltimore Lab首次记录到在LPS处理后的人单核细胞内miR-155表达水平明显升高[10],而后发现TLR4信号通路和潜伏膜蛋白1(LMP1)均可诱导其表达[8, 19]。研究表明,富含肌醇-5’ -磷酸酶的SH2域(SHIP1)和细胞因子信号1抑制物(SOCS1)是miR-155的重要作用靶点[20-21],当IL-10抑制miR-155转录时,SHIP1表达升高[22]。李芮等[23]发现在内毒素血症小鼠肺组织中miR-155表达升高,抑制miR-155能减轻小鼠肺损伤。

用LPS处理miR-155缺失的B细胞及miR-155基因敲除小鼠中, TNF-α并未升高,证实miR-155可有助于TNF-α mRNA的稳定,但目前尚未证实miR-155可直接与TNF-α mRNA结合。Tili等[24]发现miR-155通过作用于FADD和RIPK1的转录从而间接促进TNF-α的翻译。

3.3 miR-125b

Tili等[24]用LPS刺激小鼠巨噬细胞系RAW264.7后,发现miR-125b表达水平明显下调,与miR-155呈现相互拮抗的作用,二者对TNF-α调节作用相反。研究发现,miR-125b可直接作用于TNF-α mRNA的3’端非转录区,也可加速TNF-α mRNA的脱腺苷化[24-25]。因此,miR-125b可能通过两条不同的机制下调TNF-α的表达。Kim等[26]发现肌成束蛋白下调可反转LPS引起的miR-125 b减少,进一步通过TLR4/PKC通路调节TNF mRNA翻译水平,但此调节作用不如miR-155显著。

3.4 miR-21

miR-21在多种炎性状态下表达都有升高,如LPS刺激引起的肺炎、皮癣性关节炎、溃疡性结肠炎、心肌损伤等[27]。LPS处理巨噬细胞后,miR-21表达较迟,是一个慢反应miRNA。miR-21在脓毒症前期表达升高,晚期维持稳定[28]。Sheedy等[29]用RAW264.7细胞实验证实,LPS刺激后miR-21表达上调,miR-21可与PDCD4 mRNA的3’端非转录区结合,从而降低PDCD4的表达。当PDCD4表达缺失时,体内IL-10的水平升高,而NF-κB的激活受到抑制,IL-6的表达水平下降,结果表明,miR-21通过调节PDCD4的表达,在上调抗炎因子表达的同时通过调节NF-κB通路来下调促炎因子的表达而发挥抗炎作用。

3.5 miR-223

在粒细胞内,miR-223不仅可调节TLR4和TLR3的表达[30],而且可作用于IKKα [31]和STAT3,促进前炎症因子IL-6和IL-1β的产生[32],从而调节信号通路。Wang等[15]发现,发现脓毒症患者组血清miR-223明显低于SIRS组和健康组;另有研究发现在脓毒症患者中,死亡患者体内miR-223水平明显低于存活患者[33]。在miR-223基因敲除小鼠模型中,脓毒症所致心功能障碍,炎性反应以及病死率均增高[34]。因此,低水平miR-223将导致脓毒性死亡,miR-223可能是病情严重程度预测工具[35]。然而,Benz等[36]发现miR-223在LPS注射小鼠体内有所升高,但在CLP小鼠以及ICU脓毒症患者体内并没有升高,miR-223血清水平并不能反应脓毒症的存在。因此,miR-223能否作为脓毒症的有效生物标志物仍有待进一步研究。

4 小结与展望

脓毒症可导致多器官功能障碍,如肝、肾、肺、心等,其临床表现和病理生理机制复杂。目前,miRNAs都被推荐用于诊断或预测许多疾病的生物标志物[37-38]。大量研究证实miRNAs可调节炎症反应,但是由于这些研究规模都较小,且考虑到脓毒症的发生发展的复杂性,仍需要更多的前瞻性随机大规模临床试验来证实这些miRNAs作为脓毒症生物标志物的可靠性及准确性。此外,尽管证实miRNAs可调节TLRs信号通路,但在脓毒症模型中没有得到广泛研究。所有的治疗措施旨在通过调控各种通路来抑制炎症反应,从而提高脓毒症的预后,继续检测脓毒症患者细胞内外miRNAs变化仍有重要意义,因为这不仅帮助我们了解脓毒症复杂的病理生理过程,而且给我们提供新的治疗思路。

参考文献
[1] Angus DC, Linde-Zwirble WT, Lidicker J, et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care[J]. Crit Care Med , 2001, 29 (7) : 1303-1310 DOI:10.1097/00003246-200107000-00002
[2] Vincent JL, Rello J, Marshall J, et al. International study of the prevalence and outcomes of infection in intensive care units[J]. JAMA , 2009, 302 (21) : 2323-2329 DOI:10.1001/jama.2009.1754
[3] Cheng B, Xie G, Yao S, et al. Epidemiology of severe sepsis in critically ill surgical patients in ten university hospitals in China[J]. Crit Care Med , 2007, 35 (11) : 2538-2546 DOI:10.1097/01.CCM.0000284492.30800.00
[4] Olivieri F, Rippo M R, Prattichizzo F, et al. Toll like receptor signaling in "inflammaging": microRNA as new players[J]. Immunity & ageing : I & A , 2013, 10 (1) : 11 DOI:10.1186/1742-4933-10-11
[5] Ulevitch RJ, Tobias PS. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin[J]. Ann Rev Immunol , 1995, 13 : 437-457 DOI:10.1146/annurev.iy.13.040195.002253
[6] Kawai T, Akira S. Toll-like receptor downstream signaling[J]. Arthritis research & therapy , 2005, 7 (1) : 12-19 DOI:10.1186/ar1469
[7] 刘安雷, 朱., 于学忠, 脂多糖诱导脓毒症小鼠心功能障碍机制研究[J].中华急诊医学杂志, 2015, 24(8):825-829. DOI:10.3760/cma.j. issn.1671-0282.2015.08.004.
Liu AL, Zhu HD, Yu XZ. The mechanisms of LPS induced cardiac dysfunction in septic mice[J].Chin J Emerg Med. 2015, 24(8):825-829.
[8] O'Connell RM, Taganov KD, Boldin MP, et al. MicroRNA-155 is induced during the macrophage inflammatory response[J]. Proceedings of the National Academy of Sciences of the United States of America , 2007, 104 (5) : 1604-1609 DOI:10.1073/pnas.0610731104
[9] Li S, Yue Y, Xu W, et al. MicroRNA-146a represses mycobacteria-induced inflammatory response and facilitates bacterial replication via targeting IRAK-1 and TRAF-6[J]. PloS one , 2013, 8 (12) : e81438 DOI:10.1371/journal.pone.0081438
[10] Taganov KD, Boldin MP, Chang KJ, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses[J]. Proceedings of the National Academy of Sciences of the United States of America , 2006, 103 (33) : 12481-12486 DOI:10.1073/pnas.0605298103
[11] Perry MM, Moschos SA, Williams AE, et al. Rapid changes in microRNA-146a expression negatively regulate the IL-1beta-induced inflammatory response in human lung alveolar epithelial cells[J]. J Immunol , 2008, 180 (8) : 5689-5698 DOI:10.4049/jimmunol.180.8.5689
[12] Nahid MA, Satoh M, Chan EK. MicroRNA in TLR signaling and endotoxin tolerance[J]. Cellular & molecular immunology , 2011, 8 (5) : 388-403 DOI:10.1038/cmi.2011.26
[13] O'Neill LA, Sheedy FJ, McCoy CE. MicroRNAs: the fine-tuners of Toll-like receptor signalling[J]. Nature reviews. Immunology , 2011, 11 (3) : 163-175 DOI:10.1038/nri2957
[14] Li Y, Shi X. MicroRNAs in the regulation of TLR and RIG-I pathways[J]. Cellular & molecular immunology , 2013, 10 (1) : 65-71 DOI:10.1038/cmi.2012.55
[15] Wang L, Wang HC, Chen C, et al. Differential expression of plasma miR-146a in sepsis patients compared with non-sepsis-SIRS patients[J]. Experimental and therapeutic medicine , 2013, 5 (4) : 1101-1104 DOI:10.3892/etm.2013.937
[16] Gao M, Wang X, Zhang X, et al. Attenuation of Cardiac Dysfunction in Polymicrobial Sepsis by MicroRNA-146a Is Mediated via Targeting of IRAK1 and TRAF6 Expression[J]. J Immunol , 2015, 195 (2) : 672-682 DOI:10.4049/jimmunol.1403155
[17] Zhang J, Ding C, Shao Q, et al. The protective effects of transfected microRNA-146a on mice with sepsis-induced acute lung injury in vivo[J]. Zhonghua wei zhong bing ji jiu yi xue , 2015, 27 (7) : 591-594 DOI:10.3760/cma.j.issn.2095-4352.2015.07.010
[18] Yang K, He YS, Wang XQ, et al. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4[J]. FEBS letters , 2011, 585 (6) : 854-860 DOI:10.1016/j.febslet.2011.02.009
[19] Gatto G, Rossi A, Rossi D, et al. Epstein-Barr virus latent membrane protein 1 trans-activates miR-155 transcription through the NF-kappaB pathway[J]. Nucleic acids research , 2008, 36 (20) : 6608-6619 DOI:10.1093/nar/gkn666
[20] Androulidaki A, Iliopoulos D, Arranz A, et al. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs[J]. Immunity , 2009, 31 (2) : 220-231 DOI:10.1016/j.immuni.2009.06.024
[21] Billeter AT, Hellmann J, Roberts H, et al. MicroRNA-155 potentiates the inflammatory response in hypothermia by suppressing IL-10 production[J]. FASEB journal : official publication of the Federation of American Societies for Experimental Biology , 2014, 28 (12) : 5322-5336 DOI:10.1096/fj.14-258335
[22] McCoy CE, Sheedy FJ, Qualls JE, et al. IL-10 inhibits miR-155 induction by toll-like receptors[J]. Jo Biolo Chem , 2010, 285 (27) : 20492-20498 DOI:10.1074/jbc.M110.102111
[23] 李芮, 张育才, 等. miR-155抑制剂对内毒素血症小鼠肺组织JAK/STA1信号通路的影响[J].中华急诊医学杂志, 2015, 24(8):839-844. DOI:10.3760/cma.j. issn.1671-0282.2015.08.007.
Li R, Cui Y, Zhang YC, The effects of microRNA-155 inhibitor in lipopolysaccharide induced lung injury through JAK/STAT1 signaling[J].Chin J Emerg Med, 2015, 24(8):839-844.
[24] Tili E, Michaille JJ, Cimino A, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock[J]. J Immunol , 2007, 179 (8) : 5082-5089 DOI:10.4049/jimmunol.179.8.5082
[25] Wu L, Fan J, Belasco JG. Belasco, MicroRNAs direct rapid deadenylation of mRNA[J]. Proceedings of the National Academy of Sciences of the United States of America , 2006, 103 (11) : 4034-4039 DOI:10.1073/pnas.0510928103
[26] Kim JK, Jang SW, Suk K, et al. Fascin Regulates TLR4/PKC-mediated Translational Activation Through miR-155 and miR-125b, which Targets the 3' Untranslated Region of TNF-alpha mRNA[J]. Immunological investigations , 2015, 44 (3) : 309-320 DOI:10.3109/08820139.2014.914533
[27] Cheng Y, Liu X, Zhang S, et al. MicroRNA-21 protects against the H (2) O (2)-induced injury on cardiac myocytes via its target gene PDCD4[J]. Journal of molecular and cellular cardiology , 2009, 47 (1) : 5-14 DOI:10.1016/j.yjmcc.2009.01.008
[28] McClure C, Brudecki L, Ferguson DA, et al. MicroRNA 21 (miR-21) and miR-181b couple with NFI-A to generate myeloid-derived suppressor cells and promote immunosuppression in late sepsis[J]. Infection and immunity , 2014, 82 (9) : 3816-3825 DOI:10.1128/IAI.01495-14
[29] Sheedy FJ, Palsson-McDermott E, Hennessy EJ, et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21[J]. Nature immunology , 2010, 11 (2) : 141-147 DOI:10.1038/ni.1828
[30] Johnnidis JB, Harris MH, Wheeler RT, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223[J]. Nature , 2008, 451 (7182) : 1125-1129 DOI:10.1038/nature06607
[31] Li T, Morgan MJ, Choksi S, et al. MicroRNAs modulate the noncanonical transcription factor NF-kappaB pathway by regulating expression of the kinase IKKalpha during macrophage differentiation[J]. Nature Immunol , 2010, 11 (9) : 799-805 DOI:10.1038/ni.1918
[32] Chen Q, Wang H, Liu Y, et al. Inducible microRNA-223 down-regulation promotes TLR-triggered IL-6 and IL-1beta production in macrophages by targeting STAT3[J]. PloS One , 2012, 7 (8) : e42971 DOI:10.1371/journal.pone.0042971
[33] Wang H, Zhang P, Chen W, et al. Serum microRNA signatures identified by Solexa sequencing predict sepsis patients' mortality: a prospective observational study[J]. PloS One , 2012, 7 (6) : e38885 DOI:10.1371/journal.pone.0038885
[34] Wang X, Huang W, Yang Y, et al. Loss of duplexmiR-223 (5p and 3p) aggravates myocardial depression and mortality in polymicrobial sepsis[J]. Biochimica et biophysica acta , 2014, 1842 (5) : 701-711 DOI:10.1016/j.bbadis.2014.01.012
[35] Essandoh K, Fan GC. Role of extracellular and intracellular microRNAs in sepsis[J]. Biochimica etbiophysica acta , 2014, 1842 (11) : 2155-2162 DOI:10.1016/j.bbadis.2014.07.021
[36] Benz F, Tacke F, Luedde M, et al. Circulating MicroRNA-223 Serum Levels Do Not Predict Sepsis or Survival in Patients with Critical Illness[J]. Disease markers , 2015, 2015 : 384208 DOI:10.1155/2015/384208
[37] Xie WQ, Zhou L, Chen Y, et al. Circulating microRNAs as potential biomarkers for diagnosis of congenital heart defects[J]. World J Emerg Med , 2016, 7 (2) : 85-89 DOI:10.5847/wjem.j.1920-8642.2016.02.001
[38] Chen Y, Yang W, Wang GN, et al. Circulating microRNAs, novel biomarkers of acute myocardial infarction: a systemic review[J]. World J Emerg Med , 2012, 3 (4) : 257-260 DOI:10.5847/wjem.j.1920-8642.2012.04.003