310052 杭州,浙江大学医学院附属第二医院滨江院区综合ICU (卢孔渺)
General ICU, Second Affiliated Hospital, Zhejiang University School of Medicine,hanghzou 310052, China(Lu KM)
自吞噬作为一种内源性代谢调节形式,可有效降解细胞内被破坏的和功能失调的细胞器以及过度的蛋白聚集[1, 2],其核心机制包含一系列ATG(自吞噬相关蛋白)。
细胞死亡方式主要分为3大类:凋亡,坏死和自吞噬样细胞死亡。凋亡和坏死在缺血性损伤中的作用较为明确[3],研究发现,自吞噬在脑缺血损伤中也发挥一定的作用[4],但具体作用尚不明确。一般情况下,在神经细胞中,适度的自吞噬水平可有效清除细胞内过度聚集的代谢废物从而起到保护细胞的作用[5];自吞噬水平较弱甚至缺陷可能导致细胞发生死亡,而过度自吞噬的发生,如过度应激条件下,也易发生细胞死亡[6, 7, 8]。 1 自吞噬与缺血性脑损伤 1.1 自吞噬:促细胞存活
研究发现自吞噬可有效调节机体内环境,延缓细胞坏死[9, 10]。在新生大鼠中缺血损伤后皮层及海马区神经细胞可见大量Beclin1(Atg6),TUNEL(末端标记法,检测凋亡),及PI(碘化丙啶,检测细胞坏死)阳性细胞,且Beclin1主要与TUNEL 共染,而与PI染色共定位的却很少;利用3-MA(自吞噬抑制剂)抑制自吞噬后,凋亡水平稍有下降,而坏死细胞却大量增加;反之利用雷帕霉素 (自吞噬增强剂)增强自吞噬后,坏死水平明显下降[11]。在线粒体应激中利用氯喹(抑制自噬体和溶酶体融合)抑制自吞噬后,出现线粒体跨膜电位降低和通透性增强,引起CytC(细胞色素酶C)释放入胞浆,诱发凋亡[12];在内质网应激[13]中同样发现,当细胞内大量蛋白质聚集时,将激活PERK/eIF-2a,诱导ATG12表达增高,自吞噬增强,caspase12表达水平下降;予ATG5基因敲除后,自吞噬作用减弱,caspase12表达增加,凋亡水平增高。
1.2 自吞噬:促细胞死亡有研究发现,自吞噬可介导凋亡[14]。微观方面,在新生小鼠脑缺血性损伤[15, 16, 17]中,敲除ATG7基因可有效抑制caspase3激活,抑制细胞凋亡;在pMCAO大鼠模型中同样发现,利用3-MA抑制自吞噬后,BCL-2表达增高,细胞死亡减少[18];宏观方面,利用3-MA或Beclin1基因敲除技术抑制自吞噬,均可有效减少脑组织梗死面积,缓解脑水肿,增强动物的运动能力 [19]。在依达拉奉[20],神经节苷酯[21],细心脑[22]等干预性研究中同样发现,抑制自吞噬可有效减轻脑损伤。
综上,自吞噬在神经细胞损伤中发挥的作用仍不明确。有研究发现,同一机体内不同部位在相同应激条件下,自吞噬作用不同;小鼠脑缺血损伤后,CA1区细胞死亡与自吞噬无关,以凋亡为主伴轻度自吞噬样改变;CA3区以自吞噬样死亡为主,而脑皮层自吞噬和凋亡均表达增高,加强自吞噬后,细胞凋亡水平下调[23]。年龄对自吞噬可能也有一定影响,新生小鼠神经细胞同时存在自吞噬和凋亡,抑制自吞噬可有效抑制细胞凋亡[15];而成年大鼠仅表现为自吞噬样细胞死亡;应激强度及持续时间[24]同样也会影响自吞噬,当应激为轻度、一过性时,自吞噬作用增强,可有效清除细胞内过量聚集的蛋白质,抑制caspase3,凋亡水平下降;当应激持续性存在时,自吞噬同样增强,此时caspase3表达增强,细胞凋亡增加。
2 自吞噬与凋亡及坏死受损细胞的超微结构极少表现为单一坏死或者凋亡,多为二者的混合体[25],而自吞噬也常与凋亡共定位于同一细胞内[11]。
2.1 自吞噬和凋亡:在自吞噬和凋亡的信号通路中存在着共同的中间介导分子 [26],且主要共存于脑缺血周边区域[27]。
2.1.1 凋亡通路中参与自吞噬调节的信号分子(1) BCL-2家族。BCL-2蛋白家族,含促凋亡蛋白,如BAK、BAD和BAX等,和抑制凋亡蛋白,如BCL-2、BCL-XL。BCL-2与Beclin1的BH3(BCL-2 Homology -3) 结构域结合,调节基础自吞噬水平,应激条件下,二者可分离,自吞噬水平可进一步加强[28]。研究人员发现,当BAD等含BH3结构域蛋白表达增多时,可抑制性结合BCL-2,促进Beclin1与BCL-2分离,自吞噬表达增强;而BAD是促凋亡蛋白,表明凋亡作用增强时,促进自吞噬作用增强,当BAX过度表达时,激活caspase分解Beclin1,抑制自吞噬;利用zVAD(caspase阻滞剂)抑制caspase激活,自吞噬水平升高,表明BAX等含有BH3的促凋亡诱导因子,既可以通过竞争性结合BCL-2而释放Beclin1,促自吞噬发生;当BAX等表达超过一定程度后,可激活caspase诱发Beclin1分解,抑制自吞噬。[29]
(2) FoxO1(Forkhead box protein 1)。在氧化应激和血清剥夺条件下,胞浆中乙酰化FoxO1的表达水平增高,可结合ATG7促自吞噬,引起自吞噬样细胞死亡;而核内乙酰化FoxO1表达增高可通过诱导Rab7(小GTP结合蛋白:可促成熟自噬体和溶酶体结合)表达,促自噬溶酶体形成,自吞噬作用增强[31];同时当其核内高表达时,可激活caspase依赖性凋亡[30]。
2.1.2 自吞噬通路中参与凋亡调节的信号分子(1) Atg5。在一定应激条件的刺激下,atg5[32]可在CALPAIN介导下,分解为24 000残基并转位至线粒体外膜,与BCL-2/XL等结合,导致Bak等促凋亡因子游离,线粒体通透性增加,细胞色素C(Cyt C)释放入胞浆介导凋亡;敲除ATG5基因后,细胞凋亡水平下调。利用IFN-α刺激细胞时[33]发现,atg5作为中间介质和 FADD(FAS相关死亡结构域 )结合,从而激活外源性凋亡途径;敲除ATG5基因后IFN-α致凋亡作用减弱。
(2) 溶酶体酶。组织蛋白酶在脑缺血损伤中其表达水平和活性均增强[34],抑制这类组织蛋白酶可有效抑制凋亡发生[35],目前机制尚不明确。在脑缺血研究中发现,其可能机制[36, 37, 38, 39]为神经细胞缺血损伤后,溶酶体内出现一些化学物质聚集(如:3-AP等),从而使溶酶体膜的稳定性下降,诱发线粒体介导的氧化应激反应,促CytC释放入胞浆,激活caspase3等,同时释放入胞浆的组织蛋白酶可能分解相关凋亡抑制因子,如BCL-2/XL或Mcl-1等,细胞凋亡增强。
自吞噬相关蛋白ATG4D,ATG1,ATG7等[40]其相关裂解产物也可能参与促细胞凋亡发生。
2.2 自吞噬和坏死自吞噬促进或抑制坏死可随条件的改变而发生相应变化[40]。目前观点认为,坏死是一种被动的、无需能量消耗的死亡方式,而程序性坏死仅仅出现在凋亡被抑制时[41]。有关自吞噬和坏死之间关系的研究较少;新生大鼠缺血缺氧[11]后可发现神经细胞内,自吞噬增强可有效延缓细胞坏死的发生,3-MA干预可加快细胞发生坏死。也有研究发现[42]发现利用3-MA可有效缓解海马CA1神经细胞坏死的发生。
3 结语综上所述,自吞噬在神经细胞损伤中发挥的作用仍不明确,且神经细胞常伴随着自吞噬、凋亡和坏死水平变化。自吞噬与凋亡和坏死之间三者之间关系较为复杂,其在不同细胞类型、不同部位、不同发育阶段、不同处理条件等情况下,都有可能发生变化;因此,在不同应激条件下,自吞噬与凋亡和坏死之间的关系有待进一步深入探讨,从而指导临床干预和治疗。
[1] | Romao S, Münz C.LC3-associated phagocytosis [J] .Autophagy.2014;10(3):526-8.DOI:10.4161/auto.27606. |
[2] | 刘亚华,王立祥,李卉,等.一次性大负荷运动对武警战士淋巴细胞线粒体自噬的影响[J] .中国急救复苏与灾害医学杂志.2014.9.DOI:10.3969/j.issn.1673-6966.2014.09.016. Liu YH, Wan LX, Li H, et al. Effect of a bout of high-load exercise on mitochondrial autophagy in leukocyte of soldiers [J] .China Journal of Emergency Resuscitation and Disaster Medicine. 2014, 9. |
[3] | Broughton BR,Reutens DC, Sobey CG.Apoptotic mechanisms after cerebral ischemia [J] . Stroke, 2009, 40(5):e331-339.DOI:10.1161/STROKEAHA.108.531632. |
[4] | 付乐,黄亮.mTOR信号通路在缺血性脑损伤中的作用及机制[J] .中华急诊医学杂志. 2015,24(1).DOI: 10.3760/cma.j.issn.1671-0282.2015.01.033. Fu L, Huang L.The role and mechanism of mTOR signaling pathway in the cerebral ischemia [J] .Chin J of Emerg Med. 2015, 24(1). |
[5] | 曾小云,熊海霞,李欣,等.激活自噬减轻心肺复苏后Wistar大鼠脑损伤[J] .中华急诊医学杂志, 2013, 22(12).DOI:10.3760/cma.j.issn.1671-0282.2013.12.005. Zeng XY, Xiong HX, Li X, et al.Activation of autophagy improves neuron injury after the restoration of spontaneous circulation from ventricular fibrillation in wistar rats [J] .Chin J of Emerg Med.2013, 22(12). |
[6] | Lu J, Shen Y, Qian HY, et al.Effects of mild hypothermia on the ROS and expression of caspase-3 mRNA and LC3 of hippocampus nerve cells in rats after cardiopulmonary resuscitation [J] . World J Emerg Med, 2014, 5(4):298-305.DOI:10.5847/wjem.j.issn.1920-8642.2014.04.010. |
[7] | 李跃兵,康于庆,赵振龙,等.乌司他丁对大鼠肢体缺血再灌注急性肺损伤细胞白噬的影响[J] . 中国急救医学. 2015; 35(1):58-62.DOI:10.3969/j.issn.1002—1949.2015.01.013. Li YB, Kang YQ, Zhao ZL, et al. Effect of Ulinastatin on autophagy—associated proteins expression in acute lung injury induced by remote limb ischemia—reperfusion in rats [J] Chin Jcnt Care Med. 2015;35(1):58-62.DOI:10.3969/j.issn.1002—1949.2015.01.013. |
[8] | Smith CM, Chen Y, Sullivan ML, et al. Autophagy in acute brain injury: Feast, famine,or folly [J] ? Neurobiol Dis, 2011, 43(1):52-59.DOI: 10.1016/j.nbd.2010.09.014. |
[9] | Srivastava IN, Shperdheja J, Baybis M. et al.mTOR pathway inhibition prevents neuroinflammation and neuronal death in a mouse model of cerebral palsy [J] .Neurobiol Di. 2016, 85:144-154.DOI: 10.1016/j.nbd.2015.10.001. |
[10] | 肖盐,林兆奋,管军,等.自噬在家兔心肺复苏后低温治疗脑保护中的作用机制[J] .中华急诊医学杂志, 2014,(12).DOI: 10.3969/j.issn.1002-1949.2014.12.016. Xiao Y, Lin ZF, Guang J, et al.The brain protection mechanism of autophagy on the rabbits by hypothemia treatment after cardiopulmonary cerebral resuscitation [J] .Chin J of Emerg Med. 2014,(12).DOI: 10.3969/j.issn.1002-1949.2014.12.016. |
[11] | Carloni S, Buonocore G, Balduini W.Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury [J] .Neurobiol Dis, 2008, 32(3):329-339.DOI:10.1016/j.nbd.2008.07.022. |
[12] | Boya P, González-Polo RA, Casares N, et al.Inhibition of Macroautophagy Triggers Apoptosis [J] .Mol Cell Biol, 2005, 25(3):1025-40.DOI:10.1128/MCB.25.3.1025-1040.2005. |
[13] | Kouroku Y, Fujita E, Tanida I, et al.ER stress (PERK / eIF2a phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation [J] .Cell Death Differ, 2007, 14(2):230-239.DOI:10.1038/sj.cdd.4401984. |
[14] | Grishchuk Y, Ginet V, Truttmann AC, et al.Beclin 1-independent autophagy contributes to apoptosis in cortical neurons [J] .Autophagy, 2011, 7:1115-1131.DOI: 10.4161/auto.7.10.16608. |
[15] | Koike M, Shibata M, Tadakoshi M, et al.Inhibition of Autophagy Prevents Hippocampal Pyramidal Neuron Death after Hypoxic-Ischemic Injury [J] .Am J Pathol, 2008, 172(2):454-469.DOI: 10.2353/ajpath.2008.070876. |
[16] | Xie C, Ginet V, Sun Y, et al.Neuroprotection by selective neuronal deletion of atg7 in neonatal brain injury [J] .Autophagy, 2016, 4:0.DOI:10.1080/15548627.2015.1132134 |
[17] | Kessel DH, Price M, Reiners JJ, Jr.ATG7 deficiency suppresses apoptosis and cell death induced by lysosomal photodamage [J] .Autophagy, 2012, 8:1333-1341.DOI:10.4161/auto.20792. |
[18] | Wen YD, Sheng R, Zhang LS, et al.Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways [J] .Autophagy, 2008,4(6):762-769.DOI:10.4161/auto.6412. |
[19] | Ginet V, Spiehlmann A, Rummel C, et al.Involvement of autophagy in hypoxic-excitotoxic neuronal death [J] . Autophagy, 2014, 10:846-860.DOI:10.4161/auto.28264. |
[20] | Liu N, Shang J, Tian F, et al.In vivo optical imaging for evaluating the efficacy of edaravone after transient cerebral ischemia in mice [J] .Brain Res, 2011, 1397: 66-75.DOI:10.1016/j.brainres.2011.04.038. |
[21] | Li L, Tian J, Long MK, et al.Protection against Experimental Stroke by Ganglioside GM1 Is Associated with the Inhibition of Autophagy [J] .PLoS One, 2016, 11(1):e0144219.DOI:10.1371/journal.pone.0144219. |
[22] | Liu L, Fang YQ, Xue ZF, et al.Beta-asarone attenuates ischemia-reperfusion induced autophagy in rat brains via modulating JNK,p-JNK, Bcl-2 and Beclin 1 [J] .Eur J Pharmacol, 2012, 680(1/3):34-40.DOI:10.1016/j.ejphar.2012.01.016. |
[23] | Ginet V, Puyal J, Clarke PG, et al.Enhancement of autophagic flux after neonatal cerebral hypoxia-ischemia and its region-specific relationship to apoptotic mechanisms [J] .Am J Pathol, 2009, 175(5):1962-1974.DOI: 10.2353/ajpath.2009.090463. |
[24] | Ogata M, Hino S, Saito A, et al.Autophagy Is Activated for Cell Survival after Endoplasmic Reticulum Stress [J] .Mol Cell Biol, 2006, 26(24):9220-9231.DOI:10.1128/MCB.01453-06. |
[25] | Rice JE 3rd, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic ischemic brain-damage in the rat [J] . Ann Neurol, 1981, 9(2):131-141. |
[26] | Eisenberg-Lerner A, Bialik S, Simon HU, et al.Life and death partners: apoptosis,autophagy and the cross-talk between them [J] .Cell Death Differ, 2009, 16(7):966-975.DOI:10.1038/cdd.2009.33. |
[27] | Sun M, Zhao Y, Xu C.Cross-talk between calpain and caspase-3 in penumbra and core during focal cerebral ischemia-reperfusion [J] .Cell Mol Neurobiol, 2008, 28(1):71-85.DOI: 10.1007/s10571-007-9250-1. |
[28] | Oral O, Akkoc Y, Bayraktar O, et al.Physiological and Pathological significance of the molecular cross-talk between autophagy and apoptosis[J] .Histol Histopathol, 2015, 18:11714.DOI:10.14670/HH-11-714. |
[29] | Maiuri MC, Le Toumelin G, Criollo A,et al. Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1 [J] .EMBO J, 2007, 26(10):2527-2539.DOI:10.1038/sj.emboj.7601689. |
[30] | Zhao Y, Yang J, Liao W, et al.Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity [J] .Nat Cell Biol, 2010, 12(7):665-675.DOI: 10.1038/ncb2069. |
[31] | Hariharan N, Maejima Y, Nakae J, et al. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes [J] .Circ Res, 2010, 107(12):1470-1482.DOI:10.1161/CIRCRESAHA.110.227371. |
[32] | Yousefi S, Perozzo R, Schmid I, et al.Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis [J] .Nat Cell Biol, 2006, 8(10):1124-1132.DOI:10.1038/ncb1482. |
[33] | Pyo JO, Jang MH, Kwon YK, et al.Essential Roles of Atg5 and FADD in Autophagic Cell Death [J] .J Biol Chem, 2005, 280(21):20722-20729.DOI:10.1074/jbc.M413934200. |
[34] | Puyal J, Clarke PG.Targeting autophagy to prevent neonatal stroke damage [J] .Autophagy, 2009, 5(7):1060-1061.DOI:10.4161/auto.5.7.9728. |
[35] | Luo S, Rubinsztein DC.Apoptosis blocks Beclin1-dependent autophagosome synthesis: an effect rescued by Bcl-xL [J] .Cell Death Differ, 2010, 17(2):268-277.DOI:10.1038/cdd.2009.121. |
[36] | Li W, Yuan XM, Ivanova S, et al.3-Aminopropanal,formed during cerebral ischaemia, is a potent lysosomotropic neurotoxin [J] .Biochem J, 2003, 371(Pt 2):429-436. DOI:10.1042/BJ20021520. |
[37] | Repnik U, Stoka V, Turk V, et al.Lysosomes and lysosomal cathepsins in cell death [J] .Biochim Biophys Act, 2012,1824(1):22-33.DOI:10.1016/j.bbapap.2011.08.016. |
[38] | Kilinc M, Gürsoy-Ozdemir Y, Gürer G, et al.Lysosomal rupture,necroapoptotic interactions and potential crosstalk between cysteine proteases in neurons shortly after focal ischemia [J] .Neurobiol Dis, 2010, 40(1):293-302.DOI:10.1016/j.nbd.2010.06.003. |
[39] | Yu Z, Li W, Hillman J, et al.Human neuroblastoma (SH-SY5Y)cells are highly sensitive to the lysosomotropic aldehyde 3-aminopropanal [J] .Brain Res, 2004, 1016(2):163-169. DOI:10.1016/j.brainres.2004.04.075. |
[40] | Shen HM, Codogno P.Autophagy is a survival force via suppression of necrotic cell death [J] .Exp Cell Res. 2012, 318(11):1304-1308.DOI:10.1016/j.yexcr.2012.02.006. |
[41] | Ha HC, Snyder SH. Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion [J] . Proc Natl Acad Sci U S A, 1999, 96(24):13978-13982. |
[42] | Wang Y, Kim NS, Haince JF, et al.Poly(ADP-ribose) (PAR) binding to apoptosis inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos)[J] .Sci Signal, 2011, 4(167):ra20.DOI:10.1126/scisignal.2000902. |