中华急诊医学杂志  2016, Vol. 25 Issue (1): 122-127
心肺复苏中自主循环恢复预测及识别方法研究进展
李晨, 徐军 ,刘小禾,柴艳芬,于学忠    
300052 天津,天津医科大学总医院急诊科(李晨、刘小禾、柴艳芬);
100730 北京,北京协和医院急诊科(徐军、于学忠)
摘要】 心肺复苏(cardiopulmonary resuscitation, CPR)是心搏骤停时最常用的抢救方法。2010年CPR指南强调高质量胸外按压,建议除颤后继续按压2 min后再判断循环以减少按压中断时间。然而,临床中自主循环恢复(return of spontaneous circulation, ROSC)多发生在按压过程中,此时持续按压不利于自主循环稳定。因此在CPR中识别ROSC十分重要。目前临床上可用于CPR中ROSC的预测和识别方法包括:触及脉搏搏动、波幅谱面积、呼气末二氧化碳分压、冠脉灌注压、中心静脉氧饱和度、胸外按压分数、局部脑氧饱和度、光学容积描记图、结膜氧张力、经胸阻抗容积描记术及超声心动图。本文对以上CPR过程中ROSC预测及识别方法做一综述。
关键词心肺复苏     自主循环恢复     预测     识别     进展    
Research progress of prognosis and recognition methods for return of spontaneous circulation during cardiopulmonary resuscitation
Li Chen, Xu Jun , Liu Xiaohe, Chai Yanfen, Yu Xuezhong    
Department of Emergency Medicine,Tianjin Medical University Genenal Hospital,Tianjin 300052,China(Li C,Liu XH,Chai YF);
Department of Emergency Medicine,Peking Union Medical College Hospital,Peking Union Medical College,Chinese Academy of Medical Sciences,Beijing 100730,China(Xu J,Yu XZ)
Fund program: Capital Health Research and Development Fund (2011-4001-04);National Clinical Key Specialized Subject Construction Program (2012-650);National Health and Family Planning Commission of China Special Research Fund (201502019)
Corresponding author: Xu Jun, Email: xujunfree@126.com
Abstract】 Cardiopulmonary resuscitation is the most commonly used method facing cardiac arrest. The 2010 CPR guidelines emphasized high quality chest compressions and recommended continuous compression for 2 minutes after defibrillation to minimize interruptions in compressions. However, starting chest compressions immediately afteradefibrillation shock may be harmful, if the heart is providing spontaneous beats and being subjected to external compressions at the same time. So it is very important to recognize ROSC during CPR, the methods of which include touching the pulse, amplitude spectral area, partial pressure end-tidal carbon dioxide, coronary perfusion pressure, central venous oxygen saturation, chest compression fraction, regional cerebral oxygen saturation, photoplethysmography, conjunctival oxygen tension, transthoracic-impedance plethysmography and echocardiography. This paper givesareview of the ROSC prognosis and recognition methods during CPR.
Key words: Cardiopulmonary resuscitation     Return of spontaneous circulation     Prognosis     Recognition     Progress    

心搏骤停(cardiac arrest,CA)是人类最紧急的疾病状态[1]。美国发生院外CA患者出院生存率大约为2%~10%,院内CA患者生存率估计在10%~30%[2]。我国没有准确的统计资料,但目前我国院外CA患者生存率仅为l%左右[3]。CA可导致脑组织低灌注,造成神经系统损伤[4];对于院外CA患者,即使初始复苏成功送往医院,大部分仍会因为缺血、缺氧性脑损伤而死亡[5]

心肺复苏(cardiopulmonary resuscitation,CPR)是CA时最常用的抢救方法[6]。国际CPR指南从2000年起每5年更新1次。2010年10月,美国心脏学会(AHA)和欧洲复苏委员会(ERC)先后发布了新版心肺复苏指南,指南强调高质量、不间断的胸外按压,以提高患者自主循环恢复(return of spontaneous circulation,ROSC)的概率[7, 8]。若在电除颤后即刻或在其后2 min(或5个周期)的CPR过程出现ROSC,此时自主循环和人工循环同时启动,在血流动力学效应往往难以出现正相叠加效应,反而会相互干扰、相互影响,最终不仅对于全身循环起到负相血流动力学效应,甚至可导致心室颤动等恶性心律失常[9, 10],导致心脏再次停搏。因此在心肺复苏过程中,亟需一项能及早、快速而准确的预测或识别ROSC的技术。目前可应用于ROSC预测及识别的方法现介绍如下。

1 经典方法

临床医生习惯于CPR时通过触及动脉搏动来判断按压是否有效,但目前无相关研究证实其有效性。下腔静脉无静脉瓣,胸外按压时逆流至静脉系统的血流会产生股静脉波动感而影响动脉搏动判断[11]。施救者为判断脉搏波动与否,常耗费大量时间[12],且很难判断搏动的有无[13]。因此,需停止按压判断复苏效果时,按压中断时间不应超过10 s,按压间期判断循环最为优先[14]

2 波幅谱面积(amplitude spectral area,AMSA)

AMSA反映VF时心电波形频率和信号幅度,在CPR实施过程中与CPP呈正相关[15, 16],也与心肌高能磷酸盐浓度呈正相关[17]。Indik等[18]和Shanmugasundaram[19]等分别通过动物实验和临床观察研究提出AMSA能够预测除颤效果和ROSC,Schoene等[20]提出AMSA与神经系统功能恢复相关。Indik等[21]研究表明AMSA与目击VF的院外心搏骤停患者院前ROSC率(AMSA > 20.9 mV-Hz)、生存入院率(AMSA > 21 mV-Hz)及好转出院率(AMSA > 25.6 mV-Hz)高度相关。Nakagawa等[22]分析83例院外心搏骤停患者,Neurauter和Strohmenger[23]分析197例患者的770次电击,均提出AMSA在除颤后ROSC患者明显高于非ROSC者,以此来预测ROSC。

3 呼气末二氧化碳分压(partial pressure end-tidal carbon dioxide,PETCO2)

呼气末二氧化碳是呼气末期呼出气中二氧化碳的浓度,表示为二氧化碳分压,即PETCO2 (mmHg),其水平反映组织代谢、组织灌注和肺灌注及肺泡通气。正常持续通气的状态下,PETCO2反映循环状态和机体氧代谢程度。

持续通气状态下,CPR过程中CO2与心输出量呈良好相关,但这种相关性在应用碳酸氢钠时会出现短暂改变[24]。动物和临床研究均提示CPR时PETCO2与冠脉灌注压(coronary perfusion pressure,CPP)和脑灌注压呈良好相关性[25, 26]。CPR时PETCO2与CPP的相关性受血管升压药治疗的影响[27, 28]。CPR时血管升压药增加心脏后负荷,从而增加血压和心肌血流灌注,但却降低心输出量。2010年心肺复苏指南建议,若已建立高级气道患者PETCO2突然升高至正常水平(35~40 mmHg,1 mmHg=0.133 kPa),可以认为是出现ROSC的标志,而PETCO2监测对于未插管的患者意义不明确[29, 30]。2010年AHA心肺复苏指南提出,当PETCO2持续低于10 mmHg时,考虑按压质量较差,复苏成功率不高[31];ERC心肺复苏指南建议在PETCO2持续低于15 mmHg的情况下提高按压质量[7];2013年国际专家共识建议CPR过程中保证PETCO2>20 mmHg以提高复苏成功率[32, 33]。然而,二氧化碳波形监测设备并未得到普及,即使在发达国家也有此局限性[34]

4 冠脉灌注压(CPP)

CPP指CPR过程中主动脉松弛压与右房松弛压之差,与心肌血流灌注和ROSC均呈良好相关性[35, 36]。CPR过程中松弛压是指胸外按压放松期压力波形的谷点,相当于心脏正常跳动时的舒张压。研究表明,CPP的增加与24 h生存率呈正相关[37];有助于改善心肌血流灌注和ROSC率[38, 39];CPR过程中若CPP低于15 mmHg,ROSC很难出现[35]。1990年,Paradis等[35]提出院外心搏骤停时,将CPP 15 mmHg作为判断ROSC的临界值。

2013年专家共识建议CPP>20 mmHg或动脉松弛压>25 mmHg;以及PETCO2>20 mmHg以提高复苏成功率[32, 33]。然而,CPR过程中监测CPP和动脉松弛压在临床不易实施,其测定和计算需要同时记录动脉压(和右房压)。

5 中心静脉氧饱和度(central venous oxygen saturation,ScvO2)

当氧耗量、动脉血氧饱和度和血红蛋白不变的情况下,ScvO2反映氧输送的变化,后者反映心输出量的变化。ScvO2可通过放置在上腔静脉的顶端带有血氧探头的中心静脉导管进行监测。ScvO2正常值范围60%~80%。心搏骤停而行CPR时,ScvO2降至25%~35%。Rivers等[40]研究表明,CPR过程中ScvO2小于30%者多不能出现ROSC。ScvO2有助于识别ROSC而无须停止胸外按压。

6 胸外按压分数(chest compression fraction,CCF)

为实现足够的组织供氧,需要施救者尽量减少按压中断时间,而最大程度增加胸外按压时间以保证血流[41, 42]。CCF指心脏骤停过程中,实际胸外按压所占的时间百分比。这里所述的心搏骤停过程定义为从发现心搏骤停起到第一次恢复持续循环或停止抢救的时间段。低水平CCF与低ROSC成功率和成活入院率[43, 44]有关。2013年专家共识建议CCF至少大于80%以保证复苏质量[32]

7 局部脑氧饱和度(regional cerebral oxygen saturation,rSO2)

脑氧仪利用近红外光谱(near-infrared spectroscopy,NIRS)无创监测rSO2,实时提供局部脑组织氧输送和氧摄取的平衡状态[45]。rSO2是氧化血红蛋白与还原血红蛋白的比值,静脉正常值约为60%~80%。近年来用于心肺复苏[46, 47, 48, 49]

脑氧技术不需要波动性血流,故可应用于CA患者[50]。Ahn等[51]评价50例心肺复苏患者rSO2在可除颤心律(VF/ VT)和不可除颤心律(PEA/asystole)时识别ROSC的价值,认为rSO2是实时无创的ROSC预测指标,主要用于PEA/asystole的ROSC识别。Singer等[52]通过观察59例院内心搏骤停患者rSO2变化,发现CPR过程中rSO2与ROSC密切相关,ROSC者rSO2平均值较高,rSO2持续低于30%者罕见ROSC,提出CPR中rSO2监测有助于预测ROSC。

8 光学容积描记图(photoplethysmo-graphy,PPG)

2010年CPR指南推荐PPG作为潜在的可识别ROSC的方法,心搏骤停时,脉搏血氧不能提供真实信号,因外周组织中缺乏搏动性血流,但脉搏血氧波形在识别ROSC上有潜在应用价值[29- 30]。PPG传感器常见为指夹型,通过光线穿透组织探测心搏引起的组织血容量,临床上常用于监测动脉血氧饱和度。Wijshoff等[53]以动脉血压波形为参照,应用PPG信号识别CPR时自主心搏,并认为这种方法能够客观识别ROSC并减少其判断时间。CPR时,PPG监测比TTI监测稳定,很少受运动的干扰。CPR过程中监测PPG有助于及时发现自主心脏活动消失,避免过长或不必要的按压中断时间;指导血管升压药的应用;其光谱特性有助于及时发现自主循环[53]

9 结膜氧张力(conjunctival oxygen tension,CjO2)

CjO2传感器是一种无创、可持续监测血流动力学不稳定患者氧输送的指标,正常值50~60 mmHg。临床和动物实验表明CjO2反映脑血流和氧合状态。CjO2传感器安装方便、稳定迅速,其反应时间<60 s,适用于CPR过程。血流动力学稳定时CjO2与动脉血氧张力呈线性相关;而在血流动力学不稳定的患者,这种线性关系消失,这是CjO2反映氧输送和组织氧合状态[54]。1971年,Kwan和Fatt[55]首次描述应用结膜毛细血管床监测动脉氧张力的方法。1983年,Shoemaker和Lawner[56]通过在颈动脉手术中阻塞颈动脉,描述了CjO2的波动反映脑循环变化,支持CjO2监测可作为评估脑氧合状态的无创方法。1989年,Heyworth[57]在研究闭合式CPR时将CjO2监测作为评估脑血流和氧合状态的标准,并提出此参数可作为早期CPR检测参数,可指导CPR进程及用药。

10 经胸阻抗(transthoracic-impedance plethysmography,TTI)容积描记术

作为评估每搏输出量和心输出量的无创监测方法,TTI容积描记术已被广泛研究[58, 59, 60]。Pellis等[61]和Johnston等[62]建议将TTI技术固化在AED上,并通过除颤电极板测量胸阻抗。Losert等[63]研究表明,应用除颤器电极板上的阻抗传感器,能够在一定程度上有助于评估CPR过程中ROSC。其原理是在两电极板间发送高频电流,除颤器中的电路测量通过患者胸壁的电压,若通过胸壁的电流未受电阻影响,TTI显示为水平线;肺部充气可引起电阻升高,因空气是电流的不良导体;当左心室向主动脉射血,会引起电阻短暂小幅下降,因血液电导性强。胸外按压可引起胸阻抗实质性改变,同时伴运动引起的假象。

11 超声心动图(echocardiography)

目前虽无关于超声心动图与CA生存率的相关报道,有研究表明超声心动图下观察心脏活动与否有助于判断CA患者预后[64, 65, 66]。床旁超声于近10~20年兴起,主要针对创伤、妇科疾病、心脏疾病及临床血管相关性操作。超声在急诊也作为低血压时的诊断手段。在CA患者快速床旁超声心动检查有助于指导进一步干预处理[67]。多数急诊科已经开始认可经胸超声心动图作为急诊医师需要掌握的技能。Blyth等[68]系统回顾了12个关于经胸超声心动与CA预后关系研究的568例病例,得出CPR过程中若经胸超声心动图未提示心脏活动(如心室壁运动),预示很难出现ROSC,但不建议就此停止CPR。

综上所述,心电图(electocardiographic,ECG)和脉搏判断是最经典的判断循环的方法,但其判断须终止胸外按压。指南建议PETCO2、CPP、ScvO2、CFF监测能够对患者状况和治疗效果提供有价值的指标。在CPR过程中PETCO2、CPP和ScvO2均与心输出量以及心肌血流呈正相关,其低于相应阈值时多不能出现ROSC[35, 37, 69, 70, 71];在不干扰胸外按压的基础上,这些参数突然增高往往预示ROSC[35, 40, 72, 73]。然而,上述参数的使用需要建立有创血管通路及高级气道,在寸时寸金的抢救过程中费时费力且价格昂贵。

因此,无创简便的监测方法(如各种血氧监测、阻抗法、超声心动图)应运而生。虽各有优劣,但使用无创方法预测及识别ROSC已是今后的研究方向。

参考文献
[1] 薛继可,冷巧云,高玉芝,等. 急诊科心搏骤停患者心肺复苏预后的影响因素[J]. 中华急诊医学杂志, 2013, 22(1): 28-34.DOI:10.3760/cma.j.issn.1671-0282.2013.01.007. Xue JK,Leng QY,Gao YZ,et al.Factors influencing outcomes after cardiopulmonary resucitation in emergency department[J].ChinJEmerg Med,2013, 22(1): 28-34.
[2] Go AS,Mozaffarian D,Roger VL, et al. Executive summary: heart disease and stroke statistics--2013 update:areport from the American Heart Association[J]. Circulation, 2013, 127(1): 143-152.DOI:10.1161/01.cir.0000442015.53336.12.
[3] Hua W,Zhang LF,Wu YF, et al. Incidence of sudden cardiac death in China: analysis of 4 regional populations[J].JAm Coll Cardiol, 2009, 54(12): 1110-1118.DOI:10.1016/j.jacc. 2009.06.016.
[4] Safar P. Cerebral resuscitation after cardiac arrest:areview[J]. Circulation, 1986, 74(6 Pt 2): IV138-153.
[5] 沈洪,王一镗. 中国心肺复苏的发展[J]. 中华急诊医学杂志, 2006, 15(1): 13-14.DOI:10.3760/cma.j.issn.1671-0282.2006.01.003.Shen H,Wang YT. Development of cardiopulmonary resuscitation in China[J].ChinJEmerg Med,2006, 15(1): 13-14.
[6] Peberdy MA,Kaye W,Ornato JP, et al. Cardiopulmonary resuscitation of adults in the hospital:areport of 14720 cardiac arrests from the National Registry of Cardiopulmonary Resuscitation[J]. Resuscitation, 2003, 58(3): 297-308.DOI:10.1016/S0300-9572(03)00215-6.
[7] Nolan JP,Soar J,Zideman DA, et al. European Resuscitation Council Guidelines for Resuscitation 2010 Section 1. Executive summary[J]. Resuscitation, 2010, 81(10): 1219-1276.DOI:10.1016/j.resuscitation.2010.08.021.
[8] Field JM,Hazinski MF,Sayre MR, et al. Part 1: executive summary: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care[J]. Circulation, 2010, 122(18 Suppl 3): S640-656.DOI: 10.1161/CIRCULATIONAHA.110.970889.
[9] Osorio J,Dosdall DJ,Tabereaux PB, et al. Effect of chest compressions on ventricular activation[J]. AmJCardiol, 2012, 109(5): 670-674.DOI: 10.1016/j.amjcard.2011.10.024.
[10] Berdowski J, Tijssen JG,Koster RW. Chest compressions cause recurrence of ventricular fibrillation after the first successful conversion by defibrillation in out-of-hospital cardiac arrest[J]. Circ Arrhythm Electrophysiol, 2010, 3(1): 72-78.DOI: 10. 1161/CIRCEP.109.902114.
[11] Connick M,Berg RA. Femoral venous pulsations during open-chest cardiac massage[J]. Ann Emerg Med, 1994, 24(6): 1176-1179.DOI:10.1016/S0196-0644(94)70251-9.
[12] Eberle B,Dick WF,Schneider T, et al. Checking the carotid pulse check: diagnostic accuracy of first responders in patients with and withoutapulse[J]. Resuscitation, 1996, 33(2): 107-116.DOI:10.1016/S0300-9572(96)01016-7.
[13] Moule P. Checking the carotid pulse: diagnostic accuracy in students of the healthcare professions[J]. Resuscitation, 2000, 44(3): 195-201.DOI:10.1016/S0300-9572(00)00139-8.
[14] Ochoa FJ,Ramalle-Gomara E,Carpintero JM, et al. Competence of health professionals to check the carotid pulse[J]. Resuscitation, 1998, 37(3): 173-175.DOI:10.1016/S0300-9572(98)00055-0.
[15] Li Y,Ristagno G,Bisera J, et al. Electrocardiogram waveforms for monitoring effectiveness of chest compression during cardiopulmonary resuscitation[J]. Crit Care Med, 2008, 36(1): 211-215.DOI: 10.1097/01.CCM.0000295594. 93345. A2.
[16] Indik JH,Allen D,Shanmugasundaram M, et al. Predictors of resuscitation inaswine model of ischemic and nonischemic ventricular fibrillation cardiac arrest: superiority of amplitude spectral area and slope to predictareturn of spontaneous circulation when resuscitation efforts are prolonged[J]. Crit Care Med, 2010, 38(12): 2352-2357.DOI:10.1097/CCM. 0b013 e3181fa01ee.
[17] Salcido DD,Menegazzi JJ,Suffoletto BP, et al. Association of intramyocardial high energy phosphate concentrations with quantitative measures of the ventricular fibrillation electrocardiogram waveform[J]. Resuscitation, 2009, 80(8): 946-950.DOI:10.1016/j.resuscitation.2009.05.002.
[18] Indik JH,Allen D,Gura M, et al. Utility of the ventricular fibrillation waveform to predictareturn of spontaneous circulation and distinguish acute from post myocardial infarction or normal Swine in ventricular fibrillation cardiac arrest[J]. Circ Arrhythm Electrophysiol, 2011, 4(3): 337-343.DOI:10.1097/CCM.0b013e3181fa01ee.
[19] Shanmugasundaram M,Valles A,Kellum MJ, et al. Analysis of amplitude spectral area and slope to predict defibrillation in out of hospital cardiac arrest due to ventricular fibrillation (VF) according to VF type: recurrent versus shock-resistant[J]. Resuscitation, 2012, 83(10): 1242-1247.DOI:10.1016/j.resuscitation. 2012.02.008.
[20] Schoene P,Coult J,Murphy L, et al. Course of quantitative ventricular fibrillation waveform measure and outcome following out-of-hospital cardiac arrest[J]. Heart Rhythm, 2014, 11(2): 230-236.DOI:10.1016/j.hrthm.2013.10.049.
[21] Indik JH,Conover Z,McGovern M, et al. Association of amplitude spectral area of the ventricular fibrillation waveform with survival of out-of-hospital ventricular fibrillation cardiac arrest[J].JAm Coll Cardiol, 2014, 64(13): 1362-1369.DOI: 10.1016/j.jacc.2014.06.1196.
[22] Nakagawa Y,Sato Y,Kojima T, et al. Electrical defibrillation outcome prediction by waveform analysis of ventricular fibrillation in cardiac arrest out of hospital patients[J]. TokaiJExp Clin Med, 2012, 37(1): 1-5.
[23] Neurauter A,Strohmenger HU. Prediction of countershock success employing single features from multiple ventricular fibrillation frequency bands and feature combinations using neural networks[J]. Resuscitation, 2008, 76(1): 152.DOI:10.1016/j.resuscitation.2007.06.022.
[24] Okamoto H,Hoka S,Kawasaki T, et al. Changes in end-tidal carbon dioxide tension following sodium bicarbonate administration: correlation with cardiac output and haemoglobin concentration[J]. Acta Anaesthesiol Scand, 1995, 39(1): 79-84.DOI:10. 1111/j.1399-6576.1995.tb05596.x.
[25] Lewis LM,Stothert J,Standeven J, et al. Correlation of end-tidal CO2 to cerebral perfusion during CPR[J]. Ann Emerg Med, 1992, 21(9): 1131-1134.DOI:10.1016/S0196-0644(05)80658-4.
[26] Sanders AB,Atlas M,Ewy GA, et al. Expired PCO2 as an index of coronary perfusion pressure[J]. AmJEmerg Med, 1985, 3(2): 147-149.DOI:10.1016/0735-6757(85)90039-7.
[27] Gonzalez ER,Ornato JP,Garnett AR, et al. Dose-dependent vasopressor response to epinephrine during CPR in human beings[J]. Ann Emerg Med, 1989, 18(9): 920-926.DOI:10.1016/S0196-0644(89)80453-6.
[28] Cantineau JP,Merckx P,Lambert Y, et al. Effect of epinephrine on end-tidal carbon dioxide pressure during prehospital cardiopulmonary resuscitation[J]. AmJEmerg Med, 1994, 12(3): 267-270.DOI:10.1016/0735-6757(94)90136-8.
[29] Neumar RW,Otto CW,Link MS, et al. Part 8: adult advanced cardiovascular life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care[J]. Circulation, 2010, 122(18 Suppl 3): S729-767.DOI:10.1161/CIRCULATIONAHA.110.970988.
[30] Deakin CD,Nolan JP,Soar J, et al. European Resuscitation Council Guidelines for Resuscitation 2010 Section 4. Adult advanced life support[J]. Resuscitation, 2010, 81(10): 1305-1352.DOI:10.1016/j.resuscitation.2010.08.017.
[31] Ahrens T,Schallom L,Bettorf K, et al. End-tidal carbon dioxide measurements asaprognostic indicator of outcome in cardiac arrest[J]. AmJCrit Care, 2001, 10(6): 391-398.
[32] Meaney PA, Bobrow BJ, Mancini ME, et al. Cardiopulmonary resuscitation quality: improving cardiac resuscitation outcomes both inside and outside the hospital:aconsensus statement from the American Heart Association[J]. Circulation, 2013, 128(4):417-435. DOI: 10.1161/CIR.0b013e31829d8654.
[33] Idris AH,Guffey D,Aufderheide TP, et al. Relationship Between Chest Compression Rates and Outcomes From Cardiac Arrest[J]. Circulation, 2012, 125(24): 3004-3012.DOI: 10.1161/CIRCULATIONAHA.111.059535.
[34] Cook TM,Woodall N,Frerk C, et al. Major complications of airway management in the UK: results of the Fourth National Audit Project of the Royal College of Anaesthetists and the Difficult Airway Society. Part 1: anaesthesia[J]. BrJAnaesth, 2011, 106(5): 617-631.DOI: 10.1093/bja/aer058.
[35] Paradis NA,Martin GB,Rivers EP, et al. Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation[J]. JAMA, 1990, 263(8): 1106-1113.DOI:10.1001/jama.1990.03440080084029.
[36] Halperin HR,Tsitlik JE,Gelfand M, et al.Apreliminary study of cardiopulmonary resuscitation by circumferential compression of the chest with use ofapneumatic vest[J].NEnglJMed, 1993, 329(11): 762-768.DOI:10.1056/NEJM199309093291104.
[37] Kern KB,Ewy GA,Voorhees WD, et al. Myocardial perfusion pressure:apredictor of 24-hour survival during prolonged cardiac arrest in dogs[J]. Resuscitation, 1988, 16(4): 241-250.DOI:10.1016/0300-9572(88)90111-6.
[38] Lindner KH,Prengel AW,Pfenninger EG, et al. Vasopressin improves vital organ blood flow during closed-chest cardiopulmonary resuscitation in pigs[J]. Circulation, 1995, 91(1): 215-221.DOI:10.1161/01.CIR.91.1.215 .
[39] Little CM, Angelos MG,Paradis NA. Compared to angiotensin Ⅱ, epinephrine is associated with high myocardial blood flow following return of spontaneous circulation after cardiac arrest[J]. Resuscitation, 2003, 59(3): 353-359.DOI:10.1016/S0300-9572(03)00239-9.
[40] Rivers EP,Martin GB,Smithline H, et al. The clinical implications of continuous central venous oxygen saturation during human CPR[J]. Ann Emerg Med, 1992, 21(9): 1094-1101.DOI:10.1016/S0196-0644(05)80650-X.
[41] Travers AH,Rea TD,Bobrow BJ, et al. Part 4: CPR overview: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care[J]. Circulation, 2010, 122(18 Suppl 3): S676-684.DOI:10.1161 /CIRCULATIONAHA.110.970913.
[42] Berg RA,Hemphill R,Abella BS, et al. Part 5: adult basic life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care[J]. Circulation, 2010, 122(18 Suppl 3): S685-705.DOI: 10.1161/CIRCULATIONAHA.110.970939.
[43] Christenson J,Andrusiek D,Everson-Stewart S, et al. Chest compression fraction determines survival in patients with out-of-hospital ventricular fibrillation[J]. Circulation, 2009, 120(13): 1241-1247.DOI: 10.1161/CIRCULATIONAHA. 109.852202.
[44] Vaillancourt C,Everson-Stewart S,Christenson J, et al. The impact of increased chest compression fraction on return of spontaneous circulation for out-of-hospital cardiac arrest patients not in ventricular fibrillation[J]. Resuscitation, 2011, 82(12): 1501-1507.DOI: 10.1016/j.resuscitation.2011.07.011.
[45] Tobias JD. Cerebral oxygenation monitoring: near-infrared spectroscopy[J]. Expert Rev Med Devices, 2006, 3(2): 235-243.DOI:10.1586/17434440.3.2.235.
[46] Ausman JI,McCormick PW,Stewart M, et al. Cerebral oxygen metabolism during hypothermic circulatory arrest in humans[J].JNeurosurg, 1993, 79(6): 810-815.DOI:10.3171/jns. 1993. 79.6.0810.
[47] Paarmann H,Heringlake M,Sier H, et al. The association of non-invasive cerebral and mixed venous oxygen saturation during cardiopulmonary resuscitation[J]. Interact Cardiovasc Thorac Surg, 2010, 11(3): 371-373.DOI:10.1510/icvts. 2010. 240929.
[48] Mullner M,Sterz F,Binder M, et al. Near infrared spectroscopy during and after cardiac arrest--preliminary results[J]. Clin Intensive Care, 1995, 6(3): 107-111.
[49] Newman DH,Callaway CW,Greenwald IB, et al. Cerebral oximetry in out-of-hospital cardiac arrest: standard CPR rarely provides detectable hemoglobin-oxygen saturation to the frontal cortex[J]. Resuscitation, 2004, 63(2): 189-194.DOI:10.1016/j.resuscitation.2004.05.003.
[50] Tobias JD. Cerebral oximetry monitoring with near infrared spectroscopy detects alterations in oxygenation before pulse oximetry[J].JIntensive Care Med, 2008, 23(6): 384-388.DOI:10.1177/0885066608324380.
[51] Ahn A,Nasir A,Malik H, et al.Apilot study examining the role of regional cerebral oxygen saturation monitoring asamarker of return of spontaneous circulation in shockable (VF/VT) and non-shockable (PEA/Asystole) causes of cardiac arrest[J]. Resuscitation, 2013, 84(12): 1713-1716.DOI: 10.1016/j.resuscitation.2013.07.026.
[52] Singer AJ,Ahn A,Inigo-Santiago LA, et al. Cerebral oximetry levels during CPR are associated with return of spontaneous circulation following cardiac arrest: an observational study[J]. Emerg Med J, 2015, 32(5): 353-356.DOI: 10.1136/emermed-2013-203467.
[53] Wijshoff RW,van der Sar T,Peeters WH, et al. Detection ofaspontaneous pulse in photoplethysmograms during automated cardiopulmonary resuscitation inaporcine model[J]. Resuscitation, 2013, 84(11): 1625-1632.DOI:10.1016/j.resuscitation.2013.07.019.
[54] Shoemaker WC,Fink S,Ray CW, et al. Effect of hemorrhagic shock on conjunctival and transcutaneous oxygen tensions in relation to hemodynamic and oxygen transport changes[J]. Crit Care Med, 1984, 12(11): 949-952.DOI:10.1097/00003246-1984 11000-00005.
[55] Kwan M,Fatt I.Anoninvasive method of continuous arterial oxygen tension estimation from measured palpebral conjunctival oxygen tension[J]. Anesthesiology, 1971, 35(3): 309-314.DOI:10.1097/00000542-197109000-00015.
[56] Shoemaker WC,Lawner PM. Method for continuous conjunctival oxygen monitoring during carotid artery surgery[J]. Crit Care Med, 1983, 11(12): 946-947.
[57] Heyworth J. Conjunctival oxygen monitoring during cardio-pulmonary resuscitation[J]. Arch Emerg Med, 1989, 6(2): 128-136.DOI:10.1136/emj.6.2.128.
[58] Geddes LA,Baker LE. Response to passage of electric current through the body[J].JAssoc Adv Med Instrum, 1971, 5(1): 13-18.
[59] Kinnen E,Duff C. Cardiac output from transthoracic impedance records using discriminant analysis[J].JAssoc Adv Med Instrum, 1970, 4(2): 73-78.
[60] Ito H, Yamakoshi KI,Togawa T. Transthoracic admittance plethysmograph for measuring cardiac output[J].JAppl Physiol, 1976, 40(3): 451-454.
[61] Pellis T,Bisera J,Tang W, et al. Expanding automatic external defibrillators to include automated detection of cardiac, respiratory, and cardiorespiratory arrest[J]. Crit Care Med, 2002, 30(4 Suppl): S176-178.DOI:10.1097/00003246-200204001-00012.
[62] Johnston PW,Imam Z,Dempsey G, et al. The transthoracic impedance cardiogram isapotential haemodynamic sensor for an automated external defibrillator[J]. Eur Heart J, 1998, 19(12): 1879-1888.DOI:10.1053/euhj.1998.1199.
[63] Losert H,Risdal M,Sterz F, et al. Thoracic-impedance changes measured via defibrillator pads can monitor signs of circulation[J]. Resuscitation, 2007, 73(2): 221-228.DOI:10.1016/j.resuscitation.2006.10.001.
[64] Blaivas M,Fox JC. Outcome in cardiac arrest patients found to have cardiac standstill on the bedside emergency department echocardiogram[J]. Acad Emerg Med, 2001, 8(6): 616-621.DOI:10.1111/j.1553-2712.2001.tb00174.x.
[65] Salen P,Melniker L,Chooljian C, et al. Does the presence or absence of sonographically identified cardiac activity predict resuscitation outcomes of cardiac arrest patients [J]. AmJEmerg Med, 2005, 23(4): 459-462.DOI:10.1016/j.ajem. 2004. 11.007.
[66] Aichinger G,Zechner PM,Prause G, et al. Cardiac movement identified on prehospital echocardiography predicts outcome in cardiac arrest patients[J]. Prehosp Emerg Care, 2012, 16(2): 251-255.DOI:10.3109/10903127.2011.640414.
[67] Atkinson PR,McAuley DJ,Kendall RJ, et al. Abdominal and Cardiac Evaluation with Sonography in Shock (ACES): an approach by emergency physicians for the use of ultrasound in patients with undifferentiated hypotension[J]. Emerg Med J, 2009, 26(2): 87-91.DOI: 10.1097/01.ruq. 0000354 464.09674.ec.
[68] Blyth L,Atkinson P,Gadd K, et al. Bedside focused echocardiography as predictor of survival in cardiac arrest patients:asystematic review[J]. Acad Emerg Med, 2012, 19(10): 1119-1126.DOI:10.1111/j.1553-2712.2012.01456.x.
[69] Sanders AB,Kern KB,Otto CW, et al. End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation.Aprognostic indicator for survival[J]. JAMA, 1989, 262(10): 1347-1351.DOI:10.1001/jama.262.10.1347.
[70] Levin PD,Pizov R. End-tidal carbon dioxide and outcome of out-of-hospital cardiac arrest[J].NEnglJMed, 1997, 337(23): 1694-1695.
[71] Nakazawa K,Hikawa Y,Saitoh Y, et al. Usefulness of central venous oxygen saturation monitoring during cardiopulmonary resuscitation.Acomparative case study with end-tidal carbon dioxide monitoring[J]. Intensive Care Med, 1994, 20(6): 450-451.DOI:10.1016/0300-9572(95)91004-7.
[72] Callaham M,Barton C. Prediction of outcome of cardiopulmonary resuscitation from end-tidal carbon dioxide concentration[J]. Crit Care Med, 1990, 18(4): 358-362.DOI:10.1097/00003246-199004000-00002.
[73] Pokorna M,Necas E,Kratochvil J, et al.Asudden increase in partial pressure end-tidal carbon dioxide (P(ET)CO(2)) at the moment of return of spontaneous circulation[J].JEmerg Med, 2010, 38(5): 614-621.DOI:10.1016/j. jemermed. 2009.04.064.