南通市通州区人民医院重症医学科(曹培洪、居置波、季勇)
目对脓毒症休克的研究着眼于早期发现并连续评估组织灌注层面的代谢变化,以便在最初几个 h的“黄金时间”实施对疾病的有效干预。以往研究[1, 2]表明舌下二氧化碳压力(PslCO2)或胃黏膜二氧化碳压力(PgCO2)和动脉二氧化碳压力(PaCO2)间梯度P(sl-a)CO2、P(g-a)CO2是较好的临床观察指标。新近有研究[3, 4]指出经皮-动脉二氧化碳分压差(PCO2 gap) 可以更早、更敏感地反映休克时外周组织的低灌注和缺氧情况,并且和休克复苏时的变化趋势一致,但报告病例较少。南通市通州区人民医院心内科与重症医学科(ICU)合作,利用经皮二氧化碳分压(PcCO2)与PaCO2梯度P (c-a) CO2监测脓毒症休克患者组织灌注情况,发现该指标对脓毒症休克的早期诊断、疗效判定和预后评估确有较好作用,且与动脉血乳酸(LAC)水平基本一致,现报道如下。
1 资料与方法 1.1 一般资料治疗组为31例脓毒症休克患者,2013年2月至2014年9月入住本院ICU,符合《2012国际严重脓毒症及脓毒症休克诊疗指南》[5],休克均发生 于24 h以内,其中肺部感染18例(58.1%),腹部感染13例(40.9%),年龄18~76岁,(59.8±16.3)岁,男19例(61.3%),女12例(38.7%)。对照组为同期入住ICU的20名患者,年龄19~77岁,(53.8±18.7)岁,男12例(60.0%),女8例(40.0%),血流动力学稳定、无感染、需术后监护,急性生理和慢性健康状况评分(APACHE Ⅱ)及全身性感染相关器官功能衰竭评分(SOFA)基本正常。
1.2 研究方法采用前瞻性研究方法,治疗组患者入院后给予留置动脉导管监测平均动脉血压(MAP)和动脉血氧分压(PaO2)、PaCO2及LAC,中心静脉置管监测中心静脉压(CVP)和中心静脉血氧饱和度(ScvO2),无创监测PcCO2等;参照《指南》给予病因治疗、液体复苏、血管活性药物等综合治疗措施,6 h内给予早期目标导向性治疗(EGDT),目标:①CVP 8~12 mmHg;②MAP≥65 mmHg(1 mmHg=0.013 kPa);③尿量≥0.5 mL·kg-1·h-1;④ScvO2≥70%。对照组患者入院时测定PaO2、PaCO2、LAC和PcCO2等。所有患者入院24 h内禁食,补液限盐水无糖以免影响CO2产生[6, 7]。比较休克患者与非休克患者、休克存活者与休克死亡者、休克患者EGDT达标者与未达标者P (c-a) CO2和同期LAC等指标的变化情况,观察患者28 d生存率,分析P (c-a) CO2对脓毒症休克早期诊断、疗效判定和预后评估的临床意义。
1.3 PcCO2监测方法参照文献指导[8],采用丹麦雷度 TCM4,选择前胸部第二肋间皮肤菲薄处,局部无瘢痕及色素沉着,70%乙醇清洁皮肤后放置固定环,滴入导联液排尽空气后连接探头,连接前先行定标。PcCO2 读数稳定后(5 min内波动<5 mmHg)开始记录。
1.4 统计学方法应用SPSS17.0统计软件分析,连续资料根据是否符合正态分布分别表示为均数±标准差(x±s)或中位数,组间资料比较采用成组t检验;分类资料表示为频率及百分比,采用χ2检验或精确Fisher检验;诊断试验用受试者工作特性(ROC)曲线。以P<0.05为差异具有统计学意义。
2 结果入院时治疗组与对照组患者基本情况比较见表 1。脓毒症休克患者入院时P (c-a) CO2和LAC基线值明显高于非休克患者,分别为 (21.2±10.1)mmHg比(7.5±4.6)mmHg,(P=0.000)和(4.0±2.4)mmol/L比(1.6±0.5)mmol/L(P=0.000);ROC曲线下面积(AUC)分别为0.918(95% CI:0.843~0.992)和0.840(95% CI:0.719~0.962),P (c-a) CO2>14.0 mmHg与LAC>2.1mmol/L时诊断早期脓毒症休克的敏感性均为83.9%、特异性均为90.0%,见图 1(A);以P (c-a) CO2和LAC基线值预测脓毒症休克患者28 d生存率,AUC分别为0.739(95% CI:0.562~0.917)和0.702(95% CI:0.514~0.889),P (c-a) CO2>21.5 mmHg和LAC>3.9 mmol/L预测患者28 d死亡的敏感性均为71.4%、特异性均为70.6%,见图 1(B)。
分组 | 对照组(n=20) | 治疗组(n=31) | P值 |
年龄(岁) | 53.8±18.7 | 59.8±16.3 | 0.096 |
性别(男/女) | 12/8 | 19/12 | 0.927 |
APACHE Ⅱ | 14±7 | 31±12 | 0.000 |
SOFA | 3±2 | 9±4 | 0.000 |
MAP(mmol/L) | 85±22 | 62±15 | 0.031 |
CVP(cmH2O) | — | 9.7±4.6 | |
SaO2(%) | 98±1.2 | 97±3.4 | 0.670 |
ScvO2(%) | — | 65±15 | |
pH | 7.45±0.32 | 7.33±0.16 | 0.003 |
LAC(mmol/L) | 1.6±0.5 | 4.0±2.4 | 0.000 |
PaCO2(mmHg) | 38±8.4 | 35±7.9 | 0.756 |
PcCO2(mmHg) | 44±9 | 56±20 | 0.006 |
P(c-a)CO2(mmHg) | 7.5±4.6 | 21.2±10.1 | 0.000 |
注:APACHE Ⅱ 急性生理和慢性健康状况评分;SOFA 相关器官功能衰竭评分;MAP 平均动脉压;CVP 中心静脉压;SaO2 指脉氧饱和度;ScvO2 中心静脉血氧饱和度;LAC (动脉血)乳酸;PaCO2 动脉血CO2分压;PcCO2 经皮CO2分压;P (c-a) CO2 经皮与动脉血CO2分压梯度 |
![]() |
A:入院时脓毒症休克患者与非休克患者ROC诊断曲线;B:EGDT前脓毒症休克患者ROC预后曲线;C:EGDT后脓毒症休克患者ROC预后曲线;P (c-a) CO2:经皮与动脉血CO2分压梯度;LAC:(动脉血)乳酸;EGDT:早期目标导向性治疗 图 1 脓毒症休克与非休克患者入院时及脓毒症休克患者EGDT前后P (c-a) CO2与LAC的ROC曲线下面积 Fig 1 Receiver operator characteristic (ROC) curve comparing the ability of P (c-a) CO2 and LAC to distinguish patients with septic shock from ones without shock and survivors from nonsurvivors of septic shock at admission, before and after early goal directed therapy (EGDT) |
治疗组31例脓毒症休克患者入院后6 h内全部完成EGDT治疗,17例存活(54.8%),14例死亡(45.2%);其中EGDT复苏达标16例(51.6%),未达标15例(48.4%);复苏达标组存活13例(81.3%),未达标组存活4例(26.7%),F=9.314,P=0.004。EGDT后P (c-a) CO2和LAC分别为(18.8±9.4)mmHg和(3.3±2.4)mmol/L,与入院时基线值比,均P=0.000;其AUC分别为0.742(95% CI:0.562~0.921)和0.769(95% CI:0.593~0.945),P (c-a) CO2>18.3 mmHg和LAC>3.1 mmol/L时预测患者28 d死亡的敏感性均为71.4%、特异性分别为71.4%和76.5%,见图 1(C)。
EGDT后复苏达标组P (c-a) CO2及LAC显著低于未达标组,P (c-a) CO2为(14.8±7.5))mmHg vs.(23.6±9.6)mmHg(P=0.012),LAC为(2.5±1.5)mmol/Lvs.(4.3±2.9)mmol/L(P=0.038);达标组P (c-a) CO2及LAC显著低于入院时基线值,P (c-a) CO2由入院时(18.0±8.1)mmHg降至(14.8±7.5)mmHg(P=0.042),LAC由入院时(3.2±1.8)mmol/L降至(2.5±1.5)mmol/L (P=0.043);未达标组P (c-a) CO2及LAC与入院时基线值比无明显变化,P (c-a) CO2由入院时(24.6±9.2)mmHg降至(23.6±9.6)mmHg(P=0.238),LAC由入院时(4.8±2.5)mmol/L降至(4.3±2.9)mmol/L(P=0.629)。休克患者EGDT后P (c-a) CO2和LAC变化见表 2。
指标 | EGDT达标( n=16) | EGDT未达标( n=15) | ||
入院时 | EGDT后 | 入院时 | EGDT后 | |
APACHE Ⅱ | 32.6±11.3 | 34.4±10.8 | ||
SOFA评分 | 10.5±6.4 | 11.3±5.6 | ||
MAP(mmol/L) | 54±17 | 76±18 a | 51±14 | 52±16 |
CVP(cm H 2O) | 9.5±4.8 | 11.3±3.6 | 9.8±4.4 | 11.7±4.8 |
SaO 2(%) | 98±3.1 | 98±3.4 | 96±5.2 | 97±4.6 |
ScvO 2(%) | 64±16 | 73±10 a | 66±18 | 68±15 |
PaCO 2(mmHg) | 36±8.5 | 32±10.8 | 34±7.3 | 32±9.7 |
PcCO 2(mmHg) | 55±23 | 48±22 | 57±18 | 56±25 b |
LAC(mmol/L) | 3.2±1.8 | 2.5±1.5 a | 4.8±2.5 b | 4.3±2.9 b |
P(c-a)CO 2(mmHg) | 18.0±8.1 | 14.8±7.5 a | 24.6±9.2 b | 23.6±9.6 c |
复苏达标组与未达标组入院时基线值相比,见表 1: P (c-a) CO2为(18.0±8.1)mmHg vs.(24.6±9.2) mmHg(P=0.042);LAC为(3.2±1.8)mmol/L vs.(4.8±2.5)mmol/L(P=0.050);ScvO2为(64± 16)% vs.(66±18)%(P=0.720);APACHE Ⅱ为(32.6±11.3) vs.(34.4±10.8)(P=0.636); SOFA为(10.5±6.4) vs.(11.3±5.6),P=0.427。入院时两组患者虽LAC和病情严重度相似,但P (c-a) CO2差异具有统计学意义,且EGDT效果不同。
3 讨论经皮氧分压(PcO2)和经皮二氧化碳分压(PcCO2)监测技术作为无创组织氧代谢监测手段一直是急诊领域被认为有广泛前景的研究热点[9]。经过近四十年的发展已渐趋成熟,在新生儿已替代了有创动脉血氧分压(PaO2)、二氧化碳分压(PaCO2)的监测,但在成人中的应用由于受到循环呼吸因素、皮肤角质层厚度、色素及体温等影响,PcO2的实际应用价值频遭质疑[10]。动物实验和临床观察[11, 12]证实PcO2受动脉血氧分压及局部灌注血流的影响,灌注足够时,PcO2与 PaO2相关,此时PcO2与 PaO2近似相等,但循环衰竭局部组织灌注不足时,由于灌注血流及氧输送减少,PcO2与 PaO2发生背离。因此PcO2对研究休克患者临床意义不大。
CO2的生理特性可能决定了PcCO2比PcO2有更好的临床应用价值,因为CO2从组织弥散入血和从血弥散入肺泡速度均明显高于O2,PcCO2受上述干扰较小[6, 13]。Weil[14]发现在灌注滞缓组织内二氧化碳分压(PCO2)增加,尤其在感染性休克,当体循环压下降及局部组织血流减少时,能观测到PCO2异常早于其他指标如乳酸水平出现升高,当治疗有效时又先于其他指标下降,是反映休克时组织灌注层面的较好指标。笔者观察到休克患者的PcO2监测数据波动较大,甚至有时无法测出,PcCO2比PcO2读数稳定,在病情变化时比PcO2敏感;另外,休克加重时PaCO2可出现减小、不变或增大,但PcCO2总是相应升高并导致P (c-a) CO2值增加,休克好转时P (c-a) CO2值减小,至今尚未观察到P (c-a) CO2负值现象。本研究表 1显示入院时休克患者PcCO2显著高于非休克患者,但二者PaCO2差异无统计学意义,说明二个指标并非同步变化;表 2显示休克患者EGDT后PaCO2与PcCO2比EGDT前均有下降但只PcCO2差异明显。提示单纯研究PaCO2或PcCO2一种指标不足以反映休克时的全面代谢状况,而P (c-a) CO2对二个指标同时进行研究,反映组织微循环状况的同时反映体循环状况,可能更好。
本研究表明:(1)入院时P (c-a) CO2>14.0 mmHg可作为区分脓毒症休克患者与非休克患者的指标,敏感度83.9%、特异度90.0%,与LAC>2.1 mmol/L相同;进行EGDT复苏前P (c-a) CO2>21.5 mmHg预测脓毒症休克患者28 d死亡的敏感度71.4%、特异度70.6%,与LAC>3.9 mmol/L相同;进行EGDT复苏后,P (c-a) CO2>18.3 mmHg预测脓毒症休克患者死亡的敏感性71.4%,与LAC>3.1 mmol/L相同,特异性70.6%,比LAC>3.1 mmol/L稍低(76.5%)。EGDT后预测阈值减小,说明预测作用增强,原因不明,有待进一步观察。(2)EGDT复苏达标患者存活率明显高于未达标者,达标者P (c-a) CO2和LAC明显低于未达标者,显示脓毒症休克患者入院后尽快实现EGDT达标是降低病死率的重要措施,结论与目前的研究相同[3, 4, 15],同时说明P (c-a) CO2和LAC均可作为判断EGDT是否达标的一个观察指标。(3)复苏达标组患者入院时P (c-a) CO2基线值明显小于未达标组,而LAC、ScvO2、APACHEⅡ及SOFA等指标差异无统计学意义,提示患者入院时P (c-a) CO2基线值预测复苏达标作用比目前常用指标更好。综上,P (c-a) CO2是一个诊断早期脓毒症休克、评估疗效及预后的可靠指标。
目前临床上较普遍采用的脓毒症休克早期代谢监测指标主要有ScvO2和LAC。ScvO2[16, 17]虽能反映全身氧代谢情况,但由于休克时组织缺氧除了氧供不足的原因外,更主要的原因是内毒素引起线粒体损伤使其利用氧功能障碍,此时ScvO2可能不降低,但组织仍为缺氧状态,即ScvO2正常并不一定表示患者组织氧合充分。另外ScvO2[18]必须依靠中心静脉采血检查,临床应用受到一定限制。Arnold等[19]研究发现79%的高乳酸血症患者ScvO2高于70%,提示即使ScvO2达到正常,乳酸仍处于过高状态,高乳酸血症比ScvO2更能提示组织灌注不足。血乳酸[20]持续升高与危重病的严重程度和预后密切相关,已用于危重病患者病情严重度分层,入院时血乳酸越高,病情越重,预后越差。Jones等[16]提出乳酸清除率可替代ScvO2作为早期复苏目标。近年来乳酸代谢和乳酸清除率成为了研究组织氧供与氧耗关系的热点。但临床上血乳酸水平也受到较多的因素影响,如患者的肝功能障碍、感染使丙酮酸脱氢酶功能下降及应激状态下由儿茶酚胺途径等引起乳酸增加,临床上对血乳酸作为研究终点能否改变患者预后还有争议。本研究为早期脓毒症休克患者组织代谢情况的临床观察提供了一种新方法,笔者认为P (c-a) CO2这一指标较好地兼顾了体循环(PaCO2)和组织灌注(PcCO2),其诊断脓毒症休克及评价疗效和预后的作用与血乳酸水平相似,有较高的敏感性和特异性,且临床开展PcCO2监测为无创操作,患者依从性好,急诊使用有较大优势,在目前提倡脓毒症休克患者应于急诊室即开始Bundle治疗的今天[21],这一方法值得临床关注。
本研究病例数较少,可能会影响诊断试验的准确性,PaCO2和PcCO2受代谢与呼吸因素的多重影响,脓毒症休克患者的预后与原发病情况、心肺功能及治疗措施等因素关系复杂,增加观察人群和观察指标并作相关性研究以后可能更有临床意义。
[1] | Marik PE, Bankov A. Sublingual capnometry versus traditional markers of tissue oxygenation in critically ill patients[J]. Crit Care Med,2003,31(3):818-822. |
[2] | Levy B, Gawalkiewicz P, Vallet B, et al. Gastric capnometry with air-automated tonometry predicts outcome in critically ill patients[J]. Crit Care Med,2003,31(2):474-480. |
[3] | Lu YH, Liu L, Qiu XH, et al. Effect of early goal directed therapy on tissue perfusion in patients with septic shock[J]. World J Emerg Med, 2013,4(2):117-122. |
[4] | 卢院华, 刘玲, 邱晓华,等. 早期目标导向治疗对感染性休克组织灌注和氧代谢的影响[J].中华急诊医学杂志,2013,22(4):351-346. |
[5] | Dellinger RP, Levy MM, Rhodes A, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012[J]. Intensive Care Med,2013,39(2):165-228. |
[6] | Hasibeder W, Haisjackl M, Sparr H, et al. Factors influencing transcutaneous oxygen and carbon dioxide measurements in adult intensive care patients[J]. Intensive Care Med,1991,17(5):272-275. |
[7] | Rodriguez JL, Askanazi J, Weissman C, et al. Ventilatory and metabolic effects of glucose infusions[J]. Chest,1985,88(4):512-518. |
[8] | Restrepo RD, Hirst KR, Wittnebel L, et al. AARC clinical practice guideline: transcutaneous monitoring of carbon dioxide and oxygen: 2012[M]. 2012.1955-1962. |
[9] | Shoemaker WC, Wo CC, Chan L, et al. Outcome prediction of emergency patients by noninvasive hemodynamic monitoring[J]. Chest,2001,120(2):528-537. |
[10] | Hasibeder W, Haisjackl M, Sparr H, et al. Factors influencing transcutaneous oxygen and carbon dioxide measurements in adult intensive care patients[J]. Intensive Care Med,1991,17(5):272-275. |
[11] | Tremper KK, Shoemaker WC. Transcutaneous oxygen monitoring of critically ill adults, with and without low flow shock[J]. Crit Care Med,1981,9(10):706-709. |
[12] | Tremper KK, Waxman K, Shoemaker WC. Effects of hypoxia and shock on transcutaneous PO2 values in dogs[J]. Crit Care Med,1979,7(12):526-531. |
[13] | Xue Q, Wu X, Jin J, et al. Transcutaneous carbon dioxide monitoring accurately predicts arterial carbon dioxide partial pressure in patients undergoing prolonged laparoscopic surgery[J]. Anesth Analg,2010,111(2):417-420. |
[14] | Weil MH. Tissue PCO2 as universal marker of tissue hypoxia[J]. Minerva Anestesiol,2000,66(5):343-347. |
[15] | Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock[J]. N Engl J Med,2001,345(19):1368-1377. |
[16] | Jones AE. Point: should lactate clearance be substituted for central venous oxygen saturation as goals of early severe sepsis and septic shock therapy? Yes[J]. Chest,2011,140(6):1406-1408. |
[17] | Rivers EP, Elkin R, Cannon CM. Counterpoint: should lactate clearance be substituted for central venous oxygen saturation as goals of early severe sepsis and septic shock therapy? No[J]. Chest,2011,140(6):1408-1413, 1413-1419. |
[18] | O'Neill R, Morales J, Jule M. Early goal-directed therapy (EGDT) for severe sepsis/septic shock: which components of treatment are more difficult to implement in a community-based emergency department?[J]. J Emerg Med,2012,42(5):503-510. |
[19] | Arnold RC, Shapiro NI, Jones AE, et al. Multicenter study of early lactate clearance as a determinant of survival in patients with presumed sepsis[J]. Shock,2009,32(1):35-39. |
[20] | Jansen TC, van Bommel J, Bakker J. Blood lactate monitoring in critically ill patients: a systematic health technology assessment[J]. Crit Care Med,2009,37(10):2827-2839. |
[21] | Nguyen HB, Corbett SW, Steele R, et al. Implementation of a bundle of quality indicators for the early management of severe sepsis and septic shock is associated with decreased mortality[J]. Crit Care Med,2007,35(4):1105-1112. |