中华急诊医学杂志  2015, Vol. 24 Issue (7): 719-724
美托洛尔抑制缺氧/复氧诱导的心肌细胞凋亡
冉斌, 谭春燕, 胡厚祥 , 徐继前, 陈海燕, 徐磊, 张双, 王欢, 张荣驿, 岳荣川, 罗涛     
637000 四川省南充市,川北医学院附属医院心内科(冉斌、谭春燕、胡厚祥、徐继前、陈海燕、徐磊、张双、王欢、张荣驿、岳荣川、罗涛) ; 四川省江油市人民医院心内科(冉斌);冉斌和谭春燕为本文共同第一作者
摘要目的 探讨美托洛尔对缺氧/复氧(hypoxia reoxygenation,H/R)引起小鼠乳鼠心肌细胞凋亡的影响及其可能机制。 方法 原代培养小鼠(C57BL/6)乳鼠心肌细胞,并随机分为:①对照组(Control,Con),在正常培养液(含10%胎牛血清、1%青-链霉素的DMEM)中正常环境(37 ℃,95%空气-5% CO2)培养12 h;②美托洛尔组(Metoprolol,Meto),5 μmol/L美托洛尔预处理心肌细胞24 h后正常培养12 h;③H/R组,在无糖无血清-无氧培养液中,95% N2-5% CO2的无氧环境培养4 h,然后在正常培养液中正常环境培养8 h;④Meto+H/R组,5 μmol/L美托洛尔预处理心肌细胞24 h后再行缺氧复氧处理。各组细胞接受不同处理后,台盼蓝检测心肌细胞存活率, TUNEL染色检测心肌细胞凋亡率,免疫细胞化学染色检测细胞色素c(cytochrome c,cyt c)浓度, caspase-3活性检测试剂盒检测caspase-3活性,钙蛋白酶(calpain)活性检测试剂盒检测calpain活性。 结果 与对照组比较,H/R组心肌细胞存活率显著降低(91.67±4.38)% vs .(60.09±5.68)%, P<0.05;细胞凋亡率显著升高(6.60±0.53)% vs .(15.95±2.01)%, P<0.05;cyt c释放显著增加(2.55±0.28)ng/μg prot vs .(5.60±0.56)ng/μg prot, P<0.05;caspase-3活性升高(0.26±0.04)pmol/μg prot vs .(0.83±0.08)pmol/μg prot, P<0.05; calpain活性(荧光强度)显著增高(113.23±4.29) vs .(222.04±16.86), P<0.05。与H/R组比较,Meto+H/R组心肌细胞存活率显著升高(60.09±5.68)% vs .(71.82±6.25)%, P<0.05;凋亡率显著降低(15.95±2.01)% vs .(10.72±1.93)%, P<0.05;cyt c释放减少(5.60±0.56)ng/μgprot vs .(3.59±0.46)ng/μg prot, P<0.05;caspase-3活性降低(0.83±0.08)pmol/μg prot vs .(0.61±0.07)pmol/μg prot, P<0.05;calpain活性(荧光强度)显著降低(222.04±16.86) vs .(170.62±13.26), P<0.05。 结论 美托洛尔能抑制H/R诱导的心肌细胞凋亡,其机制可能与抑制cyt c释放,降低caspase-3和calpain活性有关。
关键词美托洛尔     心肌细胞     缺氧/复氧     凋亡    
Protective effects of Metoprolol on myocardial cell apoptosis of neonatal mouse after hypoxia/reoxygenation
Ran Bin, Tan Chunyan, Hu Houxiang , Xu Jiqian, Chen Haiyan, Xu Lei, Zhang Shuang, Wang Huan, Zhang Rongyi, Yue Rongchuan, Luo Tao     
Department of Cardiology,North Sichuan Medical College Affiliated Hospital,Nanchong 637000,China
Corresponding author: Hu Houxiang ,Email:hhxiang17@163.com
Abstract:Objective To investigate the effect of metoprolol on hypoxia/reoxygenation (H/R)-induced cell apoptosis in primary neonatal mouse cardiomyocytes and to clarify the underlying mechanism. Methods Primary neonatal mouse cardiomyocytes from C57BL/6 are randomly(random number) divided into four groups: ①Control group (Control,Con), in which cardiomyocytes were incubated with routine medium for 12 hours in a specific environment (a 37 ℃ and 5% CO2 humidified atmosphere); ② Metoprolol group (Meto), in which cardiomyocytes were pretreated with 5 μmol/L metoprolol for 24 hours, and then continuously cultured for another 12 hours in the routine medium and in a specific environment; ③H/R group, in which cardiomyocytes were incubated with glucose-free and serum-free DMEM medium in hypoxia environment (95% N2 and 5% CO2) for 4 hours, and then were returned to the specific environment with the routine medium for 8 hours; ④Meto + H/R group, in which cardiomyocytes were pretreated with 5 μmol/L metoprolol for 24 hours, and then exposed to H/R treatment. The cell viability and apoptosis were separately detected by trypan blue and TUNEL staining. The concentration of cytochrome c (cyt c) was assayed by using cyt c immunocytochemistry. The caspase-3 and calpain activity were separately determined using caspase-3 and calpain activity detection kit. Results Compared to the control group, there was significant decrease in cell viability in the H/R group and there was remarkable increase in numbers of apoptotic cardiomyocytes in the H/R group. Meanwhile, after cardiomyocytes exposed to H/R, there were significant increases in cyt c release , in caspase-3 activity and in calpain activity (intensity) . However, pretreatment with metoprolol significantly reduces H/R-induced loss of cell viability (60.09±5.68)% vs .(71.82±6.25)%, P<0.05] and apoptosis . In addition, metoprolol pretreatment significantly suppresses cyt c release and markedly inhibits the caspase-3 and calpain activity (intensity) compared with H/R-treated cells. Conclusions Metoprolol can protect neonatal mouse cardiomyocytes against H/R-induced apoptosis, which might be associated with inhibition of cyt c release and suppression of caspase-3 activity as well as calpain activity.
Key words: Metoprolol     Cardiomyocytes     Hypoxia/reoxygenation     Apoptosis    

急性心肌梗死是心血管疾病中的常见病,也是造成心血管疾病患者死亡的主要原因。虽然经皮冠状动脉介入治疗、溶栓治疗、紧急冠状动脉旁路搭桥术等方法能及时有效地使闭塞的冠状动脉再通,恢复梗死心肌的血液供应,但再灌注治疗可诱发并加重心肌细胞凋亡从而介导心肌损伤,即缺血-再灌注(ischemic reperfusion,I/R)损伤。β1受体阻滞剂现已被广泛用于治疗各种心血管疾病,如高血压[1, 2]、冠心病[3, 4]、心力衰竭[5, 6]、心律失常[7]等。近年来研究表明β1受体阻滞剂对缺血-再灌注引起的心肌损伤具有保护作用[8],但其具体作用机制仍不清楚。因此,本研究通过分离原代培养小鼠乳鼠心肌细胞,建立心肌细胞H/R模型,探讨美托洛尔对H/R诱导的心肌细胞凋亡的影响及其可能机制。

1 材料与方法 1.1 实验动物

新生C57BL/6小鼠乳鼠,雌雄不拘,1~3日龄,由中国人民解放军第三军医大学实验动物中心提供。

1.2 小鼠乳鼠心肌细胞分离及培养

参照本组先前方法[9],简述为,将乳鼠消毒后开胸取出心脏,置于装有预冷PBS液(北京中杉,中国)的培养皿中剪碎,清洗后加入0.125% 胰酶(Hyclone,美国)反复消化,直至组织块消失。用200目筛网过滤,800 r/min离心5 min,弃上清液,收集细胞沉淀。向细胞沉淀中加入含有10% 胎牛血清(FBS,Hyclone,美国)和1% 青-链霉素(碧云天,中国)的DMEM培养基(Hyclone,美国),混匀。差速贴壁法纯化心肌细胞,接种纯化心肌细胞于培养皿中继续培养,48 h后可用于实验。

1.3 心肌细胞H/R模型建立与分组

参照本组先前方法[9],简述为,心肌细胞在无糖无血清-无氧培养基、95% N2和5% CO2的缺氧小室(Billups Rothenberg,美国)中培养4 h,然后在正常培养基(含10% FBS、1%青-链霉素的DMEM)中正常环境(37 ℃ CO2恒温培养箱,Thermo,美国)复氧8 h。

将细胞随机分为4组:①对照组(Con),在正常培养液(含10%胎牛血清、1%青-链霉素的DMEM)中正常环境(37 ℃,95%空气-5% CO2)培养12 h;②美托洛尔组(Meto),5 μmol/L美托洛尔(根据文献[10, 11]及前期预实验摸索美托洛尔最适剂量)预处理心肌细胞24 h后正常培养12 h;③H/R组,在无糖无血清-无氧培养液中,95% N2-5% CO2的无氧环境培养4 h,然后在正常培养液中正常环境培养8 h;④Meto+H/R组,5 μmol/L美托洛尔预处理心肌细胞24 h后再行缺氧复氧处理。

1.4 指标检测 1.4.1 细胞存活率

参照本组先前方法[9],简述为,0.125% 胰酶消化贴壁心肌细胞3 min后,立即加入含10% FBS的培养基终止消化,收集细胞悬液于EP管中,1 000 r/min离心3 min,弃上清液。分别用0.4% 台盼蓝(Sigma,美国)标记,置于显微镜下计数。

1.4.2 细胞凋亡

参照本组先前方法[9]和TUNEL凋亡试剂盒(Roche,美国)操作说明书,简述为:①固定:取各组细胞,4% 多聚甲醛(Sigma,美国)固定1 h,PBS洗3次,每次3 min。②阻断过氧化酶:3% H2O2 阻断内源性过氧化物酶15 min,PBS洗3次,每次3 min。③透膜:0.1% TritonX-100(Bio-Rad,美国)通透液室温通透5 min,PBS洗3次,每次3 min。④TUNEL染色:TUNEL液37 ℃孵育1 h,PBS洗3次,每次5 min。⑤染核:Hoechst 33342(碧云天,中国)染色5 min,PBS洗3次,每次5 min。封片,拍照,于激光共聚焦显微镜下(LEICA,德国)计数每个视野中凋亡细胞数与细胞总数并拍照。

1.4.3 测量cyt c的浓度

按照试剂盒说明书操作,0.5% Triton X-100通透液4 ℃通透15 min,16 000 r/min离心10 min。收集上清液并加入酶联物,抗cyt c抗体(Abcam,Cambridge,UK)室温孵育120 min。洗涤液洗涤后加入过氧化物酶底物,室温孵育10 min。在450 nm测吸光度。绘制标准曲线,计数cyt c的浓度。

1.4.4 caspase-3的活性

参照本组先前方法[12]和caspase-3活性检测试剂盒(BIOMOL,Plymouth Meeting,PA)操作说明书,简述为,取200 μg样本,加入caspase-3底物Ac-DEVD-AMC 37 ℃孵育4 h。用荧光酶标仪(SpectraMaxM5;Molecular Devices,Sunnyvale,CA)检测荧光强度(激发波波长为380 nm,发射波波长为460 nm),通过标准曲线推算caspase-3活性。caspase-3活性表示为每小时每μg蛋白裂解的AMC底物数量。

1.4.5 calpain的活性

参照本组先前方法[13],通过检测calpain的特异荧光底物N-succinyl-LLVY-AMC(Cedarlane Laboratories)测定细胞calpain活性。用荧光酶标仪(SpectraMaxM5,Molecular Devices,加拿大)检测荧光强度(激发波波长为380 nm,发射波波长为460 nm)。calpain活性表示为含钙的测定缓冲液与无钙的测定缓冲液间的荧光的差异。calpain抑制剂PD150606(Calbiochem,德国)用于判定实验的特异性。

1.5 统计学方法

计量资料以均数±标准差(x±s)表示,采用GraphPad Prism 5.0软件统计分析并作图,多组总体采用one way ANOVA分析,两组间差异比较用Newman-Keuls分析,以 P<0.05为差异具有统计学意义。

2 结果

2.1 美托洛尔对心肌细胞存活率的影响

与对照组比较,H/R组的心肌细胞存活率明显降低,差异具有统计学意义(q=10.450,P<0.01);与对照组比较,Meto+H/R组的心肌细胞存活率降低,差异具有统计学意义(q=6.569,P<0.01);与H/R组比较,Meto+H/R组心肌细胞存活率明显升高,差异具有统计学意义(q=3.882,P<0.05)。见图 1

Con:对照组; Meto:美托洛尔组;H/R:缺氧/复氧组;Meto+H/R:美托洛尔+缺氧/复氧组;Con组与Meto组比较,a P<0.01;与H/R组比较,b P<0.05 图 1 美托洛尔对心肌细胞存活率的影响 Fig 1 Effect of metoprolol on cell viability
2.2 美托洛尔对心肌细胞凋亡率的影响

与对照组比较,H/R组心肌细胞凋亡率明显升高,差异具有统计学意义(q=11.240,P<0.01);与对照组比较,Meto+H/R组心肌细胞凋亡率升高,差异具有统计学意义(q=4.956,P<0.05);与H/R组比较,Meto+H/R组心肌细胞凋亡率明显降低,差异具有统计学意义(q=6.282,P<0.01)。见图 2图 3

Con:对照组; Meto:美托洛尔组;H/R:缺氧/复氧组;Meto+H/R:美托洛尔+缺氧/复氧组;绿色:TUNEL染色阳性细胞核;蓝色:Hoechst染色阳性细胞核 图 2 TUNEL和Hoechst染色激光共聚焦显微镜扫描代表性图片(比例尺:25 μm) Fig 2 Representative images of TUNEL-positive cells and Hoechst counterstaining cells
Con:对照组; Meto:美托洛尔组;H/R:缺氧/复氧组;Meto+H/R:美托洛尔+缺氧/复氧组;Con组和Meto组比较,a P<0.01;Con组和Meto组比较,b P<0.05;H/R组比较,c P<0.01 图 3 美托洛尔对心肌细胞凋亡率的影响 Fig 3 Effect of metoprolol on cardiomyocytes apoptosis
2.3 美托洛尔对心肌细胞cyt c水平的影响

与对照组比较,H/R组心肌细胞cyt c水平明显升高,差异具有统计学意义(q=12.890,P<0.01);与对照组比较,Meto+H/R组心肌细胞cyt c水平升高,差异具有统计学意义(q=4.429,P<0.05);与H/R组比较,Meto+H/R组心肌细胞cyt c水平明显降低,差异具有统计学意义(q=8.466,P<0.01)。见图 4

Con:对照组; Meto:美托洛尔组;H/R:缺氧/复氧组;Meto+H/R:美托洛尔+缺氧/复氧组;Con组和Meto组比较,a P<0.01;Con组和Meto组比较,b P<0.05;H/R组比较,c P<0.01 图 4 美托洛尔对心肌细胞cyt c水平的影响 Fig 4 Effect of metoprolol on the level of cardiomyocytes cyt c
2.4 美托洛尔对心肌细胞caspase-3活性的影响

与对照组比较,H/R组心肌细胞caspase-3活性明显升高,差异具有统计学意义(q=13.090,P<0.01);与对照组比较,Meto+H/R组心肌细胞caspase-3活性升高,差异具有统计学意义(q=8.037,P<0.01);与H/R组比较,meto+H/R组心肌细胞caspase-3活性明显降低,差异具有统计学意义(q=5.055,P<0.01)。见图 5

Con:对照组; Meto:美托洛尔组;H/R:缺氧/复氧组;Meto+H/R:美托洛尔+缺氧/复氧组;Con组和Meto组比较,a P<0.01;Con组和Meto组比较,b P<0.01;H/R组比较,c P<0.01 图 5 美托洛尔对心肌细胞caspase-3活性的影响 Fig 5 Effect of metoprolol on caspase-3activity
2.5 美托洛尔对心肌细胞calpain活性的影响

与对照组比较,H/R组心肌细胞calpain活性明显升高,差异具有统计学意义(q=13.130,P<0.01);与对照组比较,Meto+H/R组心肌细胞calpain活性升高,差异具有统计学意义(q=6.926,P<0.01);与H/R组比较,Meto+H/R组心肌细胞calpain活性明显降低,差异具有统计学意义(q=6.205,P<0.01)。见图 6

Con:对照组; Meto:美托洛尔组;H/R:缺氧/复氧组;Meto+H/R:美托洛尔+缺氧/复氧组;Con组和Meto组比较,a P<0.01;Con组和Meto组比较,b P<0.01;H/R组比较,c P<0.01 图 6 美托洛尔对心肌细胞calpain活性的影响 Fig 6 Effect of metoprolol on calpain activity
3 讨论

β1肾上腺素受体(β1-adrenergic receptor,β1AR)是心脏最主要的βAR,可介导内源性儿茶酚胺从而增强心脏收缩力、加快心率,同时能够激活鸟苷酸结合蛋白信号通路,促进心肌细胞凋亡。因此美托洛尔最主要的靶点是β1AR,可广泛应用于心脏疾病的治疗,如:心力衰竭、冠心病、心律失常、高血压。心肌缺血-再灌注(ischemic reperfusion,I/R)过程中氧自由基生成过多、细胞/线粒体内钙离子超载、炎症细胞的激活等均可引起心肌细胞凋亡和坏死。近年研究表明β受体阻滞剂能够清除氧自由基、减轻钙离子负荷、抑制中性粒细胞的浸润,因此在I/R损伤治疗方面具有十分重要的应用价值。

心肌I/R时氧化磷酸化活性受损,引起ROS生成过多[14],同时ATP缺乏会抑制钠泵和钙泵,引起钠超载、钠钙交换增加,导致Ca2+超载。二者均会引起线粒体损伤,使线粒体通透性转换孔开放,线粒体膜去极化,cyt c释放入胞质。cyt c与凋亡活化因子1(Apaf1)结合成多聚体,同时结合并激活下游caspase-9,从而触发caspase级联反应[15],激活caspase-3,促进DNA断裂,导致心肌细胞的凋亡。另一方面,心肌I/R时可引起内质网应激,从内质网持续释放的Ca2+激活calpain,从而激活caspase-12和caspase-3,介导心肌细胞凋亡[16]

为避免在体心脏I/R模型中神经和体液因素的干扰,本实验以离体培养的心肌细胞为研究对象,以H/R为研究模型,探讨美托洛尔对I/R后心肌细胞损伤的保护作用。本研究结果显示小鼠乳鼠心肌细胞在H/R后,心肌细胞存活率降低、凋亡率增加、cyt c释放增加、caspase-3活性和calpain活性增高;而美托洛尔预处理后,心肌细胞存活率增加、凋亡率降低、cyt c释放减少、caspase-3活性和calpain活性受到抑制。表明美托洛尔能够减少I/R损伤后心肌细胞凋亡,对心肌细胞具有保护作用。推测其机制与抑制内源性凋亡通路激活和调节凋亡相关基因表达有关。

Hakalahti等[17, 18]研究发现,β受体激动剂(如异丙肾上腺素、多巴酚丁胺)可结合细胞膜上的β1受体,增加胞外N-氨基酸末端Arg31↓Leu32处的裂解作用,使细胞膜上的裂解碎片增加,从而维持细胞外受体的稳定,同时β1受体激动剂可通过其药理学上的伴侣作用来维持细胞内受体前体的稳定。Amanfu等[19]研究发现,肾上腺素系统长期处于激活状态可使β1受体密度减小,促进细胞凋亡和肥大。β受体阻滞剂可以抑制持续性β肾上腺素刺激,从而防止和逆转心室重构,同时能适度结合β1受体,并具有高反向激动能力,故可维持β肾上腺素的反应性,增加β1AR水平和运动耐量。因此β肾上腺素信号的抑制和维持是取决于受体接受到的刺激大小。Khan等[11]研究发现,肾上腺素对成熟心肌作用逐渐减弱,当心肌受到损伤后,机体重新激活肾上腺素系统,通过β2受体促进心肌祖细胞增殖和存活,从而部分抵消心肌细胞死亡;同时使β1受体对儿茶酚胺刺激更为敏感,长期肾上腺素刺激可增加心肌细胞的凋亡和坏死。结合既往的各种研究结果,说明美托洛尔对心肌细胞的保护作用是多途径、多靶点的,其更多的途径与靶点需要进一步进行探究。

参考文献
[1] Heffernan KS,Suryadevara R,Patvardhan EA,et al.Effect of atenolol vs metoprolol succinate on vascular function in patients withhypertension[J].Clin Cardiol,2011,34(1):39-44.
[2] Okamoto LE,Gamboa A,Shibao CA,et al.Nebivolol, but not metoprolol, lowers blood pressure in nitric oxide-sensitive human hypertension[J].Hypertension,2014,64(6):1241-1247.
[3] Zhang S,Zhang M,Goldstein S, et al. The effect of C-fos on acute myocardial infarction and the significance of metoprolol intervention in a rat model[J]. Cell Biochem Biophys, 2013, 65(2): 249-255.
[4] Ibanez B,Macaya C,Sánchez-Brunete V, et al. Effect of early metoprolol on infarct sze in St-segment elevation myocardial infarction patients undergoing primary Pci: the metocard-cnic trial[J]. Circulation, 2013,128(14):1495-1503.
[5] Babick A,Elimban V,Zieroth S,et al.Reversal of cardiac dysfunction and subcellular alterations by metoprolol in heart failure due to myocardial infarction[J].J Cell Physiol,2013,228(10):2063-2070.
[6] Liu X,Zhong C,Zhao P, et al. Analysis of therapeutic effect and safety of target-dose metoprolol in the treatment of patients with diabetes mellitus with chronic heart failure[J]. Pak J Med Sci, 2014, 30(1): 7-11.
[7] Chen WR,Shi XM,Yang TS,et al.Protective effect of metoprolol on arrhythmia and heart rate variability in healthy people with 24 hours of sleep deprivation[J].J Interv Card Electr,2013,36(3):267-272.
[8] Vandeplassche G,Lu H,Wouters L, et al. Normothermic ischemic cardiac arrest in the isolated working rabbit heart: effects of dl-nebivolol and atenolol[J]. Basic Res Cardiol, 1991, 86(1): 21-31.
[9] Yue R,Hu H,Yiu KH, et al. Lycopene protects against hypoxia/reoxygenation-induced apoptosis by preventing mitochondrial dysfunction in primary neonatal mouse cardiomyocytes[J]. Plos One, 2012, 7(11): e50778.
[10] Ahmet I, Krawczyk M, Zhu W,et al.Cardioprotective and survival benefits of long-term combined therapy with β2 adrenoreceptor (AR) agonist and β1 AR blocker in dilated cardiomyopathy postmyocardial infarction[J].J Pharmacol Exp Ther,2008,325(2):491-499.
[11] Khan M, Mohsin S, Avitabile D, et al.β-adrenergic regulation of cardiac progenitor cell death versus survival and proliferation[J].Circ Res,2013,112(3):476-486.
[12] Hu H, Xenocostas A, Chin-Yee N,et al.Transfusion of fresh but not old stored blood reduces infarct size and improves cardiac function after acute myocardial infarction in anemic rats[J].Crit Care Med,2012,40(3):740-746.
[13] Hu H, Li X, Li Y,et al.Calpain-1 induces apoptosis in pulmonary microvascular endothelial cells under septic conditions[J].Microvasc Res,2009,78(1):33-39.
[14] Korge P,Ping P,Weiss JN. Reactive oxygen species production in energized cardiac mitochondria during hypoxia/reoxygenation modulation by nitric oxide[J]. Circ Res, 2008, 103(8): 873-880.
[15] Galluzzi L,Morselli E,Kepp O, et al. Targeting post-mitochondrial effectors of apoptosis for neuroprotection[J]. Biochim Biophys Acta,2009, 1787(5): 402-413.
[16] Malhi H,Kaufman RJ. Endoplasmic reticulum stress in liver disease[J]. J Hepatol, 2011, 54(4): 795-809.
[17] Hakalahti AE, Khan H, Vierimaa MM,et al. β-adrenergic agonists mediate enhancement of β1-adrenergic receptor N-terminal cleavage and stabilization in vivo and in vitro[J].Mol Pharmacol,2013,83(1):129-141.
[18] Hakalahti AE, Vierimaa MM, Lilja MK,et al.Human β1-adrenergic receptor is subject to constitutive and regulated N-terminal cleavage[J]. J Biol Chem,2010, 285(37):28850-28861.
[19] Amanfu RK, Saucerman JJ. Modeling the effects of β1-adrenergic receptor blockers and polymorphisms on cardiac myocyte Ca2+ handling[J].Mol Pharmacol,2014,86(2):222-230.