中华急诊医学杂志  2026, Vol. 35 Issue (1): 11-17   DOI: 10.3760/cma.j.cn114656-20251028-00765

2025美国心脏协会心肺复苏及心血管急救指南解读——成人生命支持
郑佳琪1 , 郑雯1 , 潘畅1 , 马静静1 , 桑文涛1 , 马岳峰2 , 徐峰1 , 陈玉国1     
1. 山东大学齐鲁医院急诊科, 济南 250012;
2. 浙江大学医学院附属第二医院, 杭州 310009

心脏骤停严重威胁人类生命健康,其致死致残率高,是医学界乃至社会各界广为关注的重大公共卫生问题之一。我国经紧急医疗服务(emergency medical services, EMS)接诊的院外心脏骤停(out-of-hospital cardiac arrest, OHCA)发病率为95.7/10万人,存活出院率仅1.2%,神经功能预后良好率低至0.8%,表明我国在心脏骤停救治方面仍面临严峻挑战[1]。近期,美国心脏协会(American Heart Association,AHA)发布的2025 AHA心肺复苏及心血管急救指南(以下简称2025年指南)[2-13],系统更新了生命支持、教育科学、救治体系以及复苏伦理等领域的相关内容,共提出760项基于循证医学证据的推荐意见,旨在为全球急救从业人员提供最新的理论依据与临床实践指导。本文结合国际最新研究进展,系统梳理并对比既往指南的推荐内容,重点解读成人基础生命支持与高级生命支持的关键更新要点,以期为我国临床实践与科研工作提供参考,推动心脏骤停急救工作的规范化、同质化和高质量发展。

1 成人基础生命支持 1.1 创伤患者的气道开放

2025年指南更新建议,对于头颈部创伤的心脏骤停患者,若推举下颌法和气道辅助装置无法开放气道,经培训的施救者应改用仰头提颏法(1级推荐,C-EO级证据)。鉴于头颈部创伤患者可能存在颈椎损伤,经培训的施救者应优先尝试推举下颌法开放气道,因为该操作的头颈部活动幅度少于仰头提颏法[14]。若在采用推举下颌法并置入气道辅助装置后仍无法开放气道,考虑到氧合与通气在心肺复苏(cardiopulmonary resuscitation, CPR)中的关键作用,经过培训的救援人员可改用仰头提颏法开放气道。2025年的证据回顾虽未发现关于该主题的新证据,但强调实施者为经过培训的施救者,不再局限于2020 AHA心肺复苏及心血管急救指南(以下简称2020年指南)中的专业医护人员[15],提示应加强对于非专业施救者气道开放相关知识与技能的培训。

1.2 通气 1.2.1 通气有效性的监测

2025年指南更新建议,对心脏骤停患者进行人工通气时,应给予能够可见胸廓隆起的通气量(2a级推荐,C-LD级证据)。既往指南建议要达到500~600 mL或可见胸廓起伏(2a级推荐,C-LD级证据)[16-17]。但是在院前急救中通常缺乏监测潮气量的设备,而且有研究显示当潮气量在362~406 mL时即可见明显的胸廓起伏[18]。因此,此次更新不再强调潮气量具体数值,而是将重点放在胸廓起伏的观察上,既能避免过度通气,还能使施救者在复苏过程中能更好地监测通气情况。

1.2.2 避免通气不足/过度

2025年指南更新建议,对心脏骤停患者进行人工呼吸时,施救者应避免通气不足(频率过低或潮气量不足)和过度通气(频率过高或潮气量过大)(3级:有害,C-LD级证据)。两项回顾性队列研究和一项系统综述均发现施救者常因不规范通气导致通气不足,进而引起患者动脉氧分压持续下降、组织缺氧加重,尤其在非心源性心脏骤停(如窒息性骤停)中,显著延长患者脑缺血时间,导致神经功能预后不良[19-21]。因此,此次新指南在2020年指南对过度通气关注的基础上,进一步新增了对通气不足影响患者预后的重视。

1.3 除颤电极片在女性患者中的使用

2025年指南新增了对女性心脏骤停患者除颤的建议,即在放置除颤电极片时,可仅调整文胸位置,无需移除(2b级推荐,C-EO级证据)。两项回顾性队列研究发现,女性心脏骤停患者的自动体外除颤器(automated external defibrillator, AED)使用率显著低于男性,可能与除颤时要求电极板或电极片直接与胸部皮肤接触相关[22-23]。2024年国际复苏联络委员会(International Liaison Committee on Resuscitation,ILCOR)对除颤时衣物移除的研究的综述表明,尚无足够证据支持常规移除文胸[24]。基于大动物和模拟人的研究也发现,即使将AED电极片直接贴在文胸的金属钢圈上,首次除颤成功率仍为100%[25-26],且未观察到不良事件[25]。综上所述,在除颤时可仅调整文胸位置,该建议的实施将有助于提高女性心脏骤停患者的除颤率及存活率。

1.4 肥胖患者的复苏策略

2025年指南新增建议,对肥胖心脏骤停患者,复苏时采用与非肥胖患者相同的CPR技术(1级推荐,C-LD级证据)。由于肥胖患者胸壁厚度增加,复苏时需要更大的按压力度才能达到推荐的按压深度,因此在肥胖患者心脏骤停的管理中,确保高质量CPR可能更具挑战性。2024年ILCOR首次对肥胖患者CPR进行范围综述,结果显示,尽管肥胖患者的复苏结局存在异质性,但没有证据表明肥胖患者需要不同于非肥胖患者的CPR技术[27]。基于此,2025年指南建议对肥胖患者采用与非肥胖患者相同的CPR技术。在全球肥胖率攀升的背景下,该建议为临床实践中肥胖心脏骤停患者CPR提供了重要依据。

1.5 重度气道异物梗阻的急救

2025年指南新增建议,发生重度气道异物梗阻(foreign-body airway obstruction, FBAO)时,施救者应立即实施5次背部叩击与5次腹部冲击(海姆立克法)循环的急救方法,直至异物排出或患者出现意识丧失(1级推荐,B-NR级证据)。FBAO是一种常见的急症,也是意外死亡的主要原因之一[28]。因此,本次指南新增对重度FBAO的建议。一项纳入709例FBAO患者的队列研究显示,与腹部冲击相比,背部叩击与更高的梗阻解除率及更少的损伤相关[29]。此外,病例报告还报道了腹部冲击可能导致致命损伤,包括主动脉夹层和胃破裂[30-32]。但是,目前既无随机对照试验(randomized controlled trial, RCT)比较背部叩击、腹部冲击对重度FBAO的有效性或安全性,也缺乏证据表明上述干预措施最有效的实施顺序[30, 33]。因此,此次更新的成人急救策略借鉴了婴儿和儿童FBAO急救策略,为清醒重度气道异物梗阻的紧急处理提供了理论依据。

1.6 施救者位置 1.6.1 施救者床旁位置

2025年指南新增建议,施救者在给予胸外按压时,应尽可能使患者躯干与自身膝部处于同一高度(1级推荐,B-NR级证据)。既往指南对患者发生心脏骤停时,施救者应采取何种体位以实施高质量CPR,缺乏明确建议。然而,胸外按压质量受施救者相对于患者的位置的影响。一项纳入24名医护人员的模拟RCT发现,当病床高度超过施救者膝盖20 cm时,平均按压深度显著降低[34]。另一项纳入16名医护人员的模拟RCT研究表明,当床面与施救者膝部处于同一高度时,不仅能提供更高质量的CPR,还能有效减轻施救者的疲劳感[35]。该建议强调了施救者-患者体位关系的重要性,为规范实施高质量CPR提供了具体的操作指导。

1.6.2 特殊场景下的施救者位置

2025年指南针对特殊场景下(雪崩、狭小空间等)OHCA患者的救治新增建议,在心脏骤停急救中,单人施救者可考虑位于患者头侧实施胸外按压(over-the-head CPR, OTH-CPR)(2b级推荐,C-LD级证据)。既往指南中未考虑因急救空间有限,单人施救者无法在患者侧方进行CPR的情况,这会降低此类人群的存活率[36-37]。对此,2025年指南指出可以考虑OTH-CPR,即操作时施救者采用跪姿,将患者头部置于自身双膝之间按压患者胸骨。8项基于模拟人的RCT结果表明,与传统侧位CPR相比,OTH-CPR在按压质量(深度和频率)和通气质量(频率及潮气量)上并无差异,甚至更优[36-43]。综上,此新增建议为特殊环境中心脏骤停患者的救治提供了科学、可行、高效的复苏策略。

2 成人高级生命支持 2.1 矢量变化与双序贯除颤的应用

2025年指南更新建议,对于心脏骤停患者,在连续实施3次或以上除颤后,若仍存在持续性室颤(ventricular fibrillation, VF)/无脉性室速(pulseless ventricular tachycardia, pVT),使用矢量变化(vector change, VC)除颤或双序贯除颤(double sequential defibrillation, DSD)的有效性尚不明确(2b级推荐,B-R级证据)。VC指将除颤电极片由标准前-侧位改为前-后位;DSD指用两台除颤器在毫秒级的时间差内进行除颤。既往多项观察性研究均未能证实DSD可改善持续性VF/pVT患者的预后[44-48],但2022年一项纳入405例患者的RCT显示,与标准除颤组的存活出院率(13.3%)相比,VC与DSD能显著改善心脏骤停患者存活出院率(VC:21.7%;DSD:30.4%)[49];然而,二次分析发现DSD的有效性仅局限于17%的真正持续性VF/pVT患者,在另外占83%的3次除颤后VF/pVT短暂终止但迅速复发的患者中,DSD未能改善其预后[50]。此外,DSD需实现毫秒级同步,手动操作难度高[51-53]。因此,2025年指南更新了证据等级(由C-LD级提升至B-R级),但仅建议“可考虑使用”,并强调现有证据有限[54]

2.2 初始通路的建立

2025年指南更新建议,专业人员为心脏骤停患者建立药物输注通路时应首先尝试静脉通路(1级推荐,A级证据);若初步尝试静脉通路不成功或不可行,可以建立骨内通路(2a级推荐,A级证据)。近期三项共纳入9 272例OHCA患者的RCT研究评估了初始骨内通路与初始静脉通路的临床效果,结果发现两种通路在改善患者30 d存活率上差异无统计学意义[55-57];但2025年一项系统综述发现,相较于骨内通路,静脉通路在实现自主循环恢复(return of spontaneous circulation, ROSC)方面表现更优[58]。以上研究均为首选静脉通路而非骨内通路提供了更多的证据。因此,2025年指南将首选静脉通路由2020年的2a级推荐、B-NR级证据提升至当前的1级推荐、A级证据;将初步尝试静脉通路不成功或不可行时,可以建立骨内通路这条建议由2020年的2b级推荐、B-NR级证据提升至当前的2a级推荐、A级证据。

2.3 血管加压药物的应用

2025年指南更新建议,在可电击心律的心脏骤停患者中,肾上腺素应在初始除颤失败后给予(2b级推荐,B-NR级证据)。2024年一项纳入37 668例院内心脏骤停患者的观察性研究显示,在初始心律为可电击心律的患者中,与较少使用肾上腺素相比,首次除颤前频繁使用肾上腺素的患者存活率反而降低了10%,提示了在除颤前给予肾上腺素不利于患者预后[59]。因此,2025年指南建议在初始除颤失败后给予肾上腺素,并将证据等级从2020年指南推荐的C-LD级升级为B-NR级证据。此外,三项系统综述与Meta分析均显示,单用血管加压素或血管加压素和肾上腺素联用,与单用肾上腺素相比并未显著改善患者存活率[60-62]。因此,指南不推荐成人心脏骤停患者单独使用血管加压素或联合使用血管加压素与肾上腺素(3级:无益,B-R级证据)。

2.4 ROSC后的血压管理

2025年指南更新建议,ROSC后应避免低血压,并维持平均动脉压(mean arterial pressure, MAP)至少在65 mmHg(1 mmHg=0.133 kPa)以上(1级推荐,B-R级证据)。心脏骤停ROSC后常出现低血压且与不良预后独立相关,因此血压管理十分关键。2020年指南建议血压管理目标为收缩压≥90 mmHg、MAP≥65 mmHg(2a级推荐,B-NR级证据)。新增4项大规模RCT研究表明,相较于较低MAP目标(MAP≥65 mmHg),较高MAP目标并未显著改善患者存活率或神经功能预后[63-66]。因此,现有证据支持将MAP≥65 mmHg继续作为常规血压管理目标。另外,基于上述试验均以MAP为目标值,2025年指南删除了先前设定的收缩压目标,更精确地聚焦于MAP≥65 mmHg这一核心管理标准。关于更低(如60~65 mmHg)或更高(如80~100 mmHg)MAP目标对特定人群的影响,仍有待进一步研究。

2.5 ROSC后的诊断性检查

2025年指南新增了心脏骤停后进行诊断性检查的相关建议,即对于ROSC后的患者,可行颅脑至盆腔CT以评估心脏骤停病因及复苏相关并发症(1级推荐,B-NR级证据)。在沿用2020年指南将颅脑CT用于不良神经预后评估的基础上,2025年指南进一步拓展了颅脑CT在病因识别和并发症判断中的应用范围。此外,2019年和2023年两项系统综述结果显示,在ROSC后行颅脑至盆腔CT(如平扫CT、增强CT、CT血管成像),有助于识别颅内出血、急性冠脉事件、主动脉夹层及肺栓塞等病因,检出率为8%~54%[67-68]。同时多项观察性研究表明,CT在识别复苏相关损伤方面具有一定优势,特别是器官撕裂伤和大出血等需紧急处理的情况[69-72]。因此,2025年指南建议在ROSC后行颅脑至盆腔CT检查,以综合评估病因及复苏相关并发症。

除CT检查外,2025年指南新增建议,对于ROSC后的患者,可行超声心动图或床旁超声以识别需干预的关键病因(2b级推荐,C-LD级证据)。2020年和2024年的两项观察性研究均显示,超声心动图或床旁超声可识别主动脉夹层、肺栓塞、心包填塞等潜在心脏骤停病因[73-74]。但现有研究更多关注患者是否存活等结局指标,仅少数评估其诊断骤停病因的能力(占0.6%)[75]。因此目前仍缺乏超声在诊断骤停病因准确性方面的相关数据[76],未来仍需进一步开展研究。

2.6 ROSC后的温度控制

2025年指南更新建议,对于ROSC后仍昏迷的心脏骤停患者,进行温度控制时,目标温度应维持在32~37.5℃之间(1级推荐,B-R级证据)。2021年发表的目标温度管理试验显示,33℃的低温治疗与预防发热(> 37.5℃)相比,患者的神经功能预后差异无统计学意义[77]。并且2023年ILCOR更新的系统综述与Meta分析中发现[78],与36℃或正常体温相比,32~34℃的温度控制并未改善患者的存活率。因此,2025年指南将2020年指南推荐的32~34℃的目标温度放宽为32~37.5℃。

2025年指南建议,针对ROSC后仍昏迷的患者,温度控制至少维持36 h(2a级推荐,B-R级证据)。最新指南的调整主要基于2项比较ROSC后低温时长(48 h vs. 24 h及72 h vs. 36 h)的RCT研究,虽然其结果表明不同时长组的临床结局差异无统计学意义,但其效应估计值均一致倾向于更长的体温控制时间[79-80]。另外两项研究心脏骤停后温度控制目标的大型RCT均采用了72 h的控温方案[77, 81]。此外,有四项观察性研究一致证实,心脏骤停后发热(包括ROSC 24 h之后出现的发热)与不良神经预后显著相关[82-85]。因此,在ILCOR的研究证据更新之后,2025年指南中温度控制时长由2020年指南推荐的24 h更改为36 h。

2.7 ROSC后的机械循环支持

机械循环支持(mechanical circulatory support, MCS)包括主动脉内球囊反搏、经皮心室辅助装置、体外膜肺氧合等,可在血管活性药物无效时提供血流动力学支持,为心脑功能恢复争取时间。2025年指南更新建议,对于经过严格筛选(存在可逆病因、常规治疗无效、无绝对禁忌证、有专业团队管理)、ROSC后仍存在难治性心源性休克的患者,可考虑临时使用MCS(2b级推荐,B-NR级证据);但不推荐对心脏骤停ROSC后的心源性休克患者常规使用MCS(3级:无益,B-R级证据)。近期多项RCT及Meta分析证实,常规使用MCS不能改善心源性休克与心脏骤停患者的存活率,且会增加严重出血和缺血风险,因此不推荐常规应用[86-91]。当前专门针对心脏骤停患者MCS的临床试验有限,鉴于心源性休克与心脏骤停常互为因果,且多数心源性休克的研究纳入了既往发生心脏骤停的患者,因此,2025年指南将MCS在难治性休克中的证据基础延伸至心脏骤停患者。对于经过严格筛选的难治性心源性休克的患者,可考虑将其作为挽救性治疗手段[86-91]。与2020年指南中仅提出“对于经过严格筛选的心脏骤停患者可考虑采用体外心肺复苏”的建议相比,2025年指南在更全面的证据基础上对MCS的应用策略进行了重要更新与拓展。

2025年指南新增建议,对于已接受MCS的心脏骤停患者应由具备设备管理及潜在并发症处理经验的团队进行规范化监测与管理(1级推荐,C-EO级证据)。2024年一项纳入1 041家医院、共6 637例心源性休克患者的观察性研究发现,在实施MCS更多的中心,接受MCS的患者预后更佳[92]。因此,指南提出,接受MCS的患者应由经验丰富的团队进行管理。

2.8 ROSC后的神经功能预后评估

2025年指南更新建议,对ROSC后仍昏迷的患者,神经功能预后评估应采用多模态策略,避免仅凭单一指标做出判断(1级推荐,B-NR级证据)。此前指南聚焦于预测不良神经功能预后,但过度依赖不良预后的指标和模型可能造成假阳性误判,导致本有恢复潜力的患者被过早撤除生命支持。为此,2025年指南新增对良好神经功能预后的评估建议:对于ROSC后仍昏迷的患者,在联合其他预后评估手段时,若72 h内连续脑电图(electroencephalography, EEG)监测显示背景节律无放电,可将其作为支持良好神经功能预后的判断依据(2b级推荐,B-NR级证据)。2022年一项纳入37项队列研究的系统综述发现,该EEG模式预测患者出院、1个月、3个月及6个月良好神经功能预后的特异度范围为51%~100%,其中多数研究超80%,且在12~24 h评估时特异度更高[93]。2024年一项观察性研究进一步指出,24 h内该EEG模式预测6个月良好神经功能预后的敏感度为64%,特异度达89%[94]。这些证据为早期主动识别有望恢复的患者提供了有力支持,有助于优化临床决策,减少误判风险。

3 结语

2025年AHA指南基于最新的循证医学证据,对成人生命支持领域做出多项重要更新:进一步强调通气在CPR中的关键作用;新增针对特殊人群的救治策略,涵盖肥胖患者、女性患者及重度气道异物梗阻患者等群体;并对ROSC后的综合管理进行了系统修订,内容包括诊断性评估、温度控制方案、血压管理目标以及神经功能预后的预测与评估等。此次指南的发布,为心脏骤停的临床救治提供了更为科学和系统的框架,不仅体现了从经验驱动向精准化治疗转变的发展趋势,也凸显了救治策略需紧密结合真实世界临床场景的理念。我国心脏骤停的整体救治形势依然严峻,区域间救治水平存在较大差异,整体能力仍有提升空间。本次指南的更新,可为我国心脏骤停领域的临床实践优化与科学研究开展提供关键参考,进而切实助力我国各地心脏骤停救治工作的规范化、同质化和先进性。

利益冲突  所有作者声明无利益冲突

参考文献
[1] Zheng JQ, Lv CZ, Zheng W, et al. Incidence, process of care, and outcomes of out-of-hospital cardiac arrest in China: a prospective study of the BASIC-OHCA registry[J]. Lancet Public Health, 2023, 8(12): e92-e932. DOI:10.1016/S2468-2667(23)00173-1
[2] Del Rios M, Bartos JA, Panchal AR, et al. Part 1: executive summary: 2025 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2025, 152(16_suppl_2): S284-s312. DOI:10.1161/cir.0000000000001372
[3] Panchal AR, Bartos JA, Wyckoff MH, et al. Part 2: evidence evaluation and guidelines development: 2025 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2025, 152(16_suppl_2): S313-S322. DOI:10.1161/CIR.0000000000001373
[4] Elmer J, Atkins DL, Daya MR, et al. Part 3: ethics: 2025 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2025, 152(16_suppl_2): S323-S352. DOI:10.1161/cir.0000000000001371
[5] Dezfulian C, Cabañas JG, Buckley JR, et al. Part 4: systems of care: 2025 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2025, 152(16_suppl_2): S353-S384. DOI:10.1161/cir.0000000000001378
[6] Lee HC, Strand ML, Finan E, et al. Part 5: neonatal resuscitation: 2025 American Heart Association and American academy of pediatrics guidelines for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2025, 152(16_suppl_2)): S385-S423. DOI:10.1161/CIR.0000000000001367
[7] Joyner BL Jr, Dewan M, Bavare A, et al. Part 6: pediatric basic life support: 2025 American Heart Association and American academy of pediatrics guidelines for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2025, 152(16_suppl_2): S424-S447. DOI:10.1161/CIR.0000000000001370
[8] Kleinman ME, Buick JE, Huber N, et al. Part 7: adult basic life support: 2025 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2025, 152(16_suppl_2)): S44-S478. DOI:10.1161/cir.0000000000001369
[9] Lasa JJ, Dhillon GS, Duff JP, et al. Part 8: pediatric advanced life support: 2025 American Heart Association and American academy of pediatrics guidelines for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2025, 152(16_suppl_2): S479-S537. DOI:10.1161/CIR.0000000000001368
[10] Wigginton JG, Agarwal S, Bartos JA, et al. Part 9: adult advanced life support: 2025 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2025, 152(16_suppl_2)): S538-S577. DOI:10.1161/cir.0000000000001376
[11] Cao DZ, Arens AM, Chow SL, et al. Part 10: adult and pediatric special circumstances of resuscitation: 2025 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2025, 152(16_suppl_2): S578-S672. DOI:10.1161/CIR.0000000000001380
[12] Hirsch KG, Amorim E, Coppler PJ, et al. Part 11: post–cardiac arrest care: 2025 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2025, 152(16_suppl_2): S673-S718. DOI:10.1161/cir.0000000000001375
[13] Donoghue AJ, Auerbach M, Banerjee A, et al. Part 12: resuscitation education science: 2025 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2025, 152(16_suppl_2): S71-S750. DOI:10.1161/CIR.0000000000001374
[14] Elam JO, Greene DG, Schneider MA, et al. Head-tilt method of oral resuscitation[J]. J Am Med Assoc, 1960, 172: 812-815. DOI:10.1001/jama.1960.03020080042011
[15] Panchal AR, Bartos JA, Cabañas JG, et al. Part 3: adult basic and advanced life support: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2020, 142(16_suppl_2): S366-S468. DOI:10.1161/CIR.0000000000000916
[16] Dörges V, Ocker H, Hagelberg S, et al. Smaller tidal volumes with room-air are not sufficient to ensure adequate oxygenation during bag-valve-mask ventilation[J]. Resuscitation, 2000, 44(1): 37-41. DOI:10.1016/s0300-9572(99)00161-6
[17] Wenzel V, Keller C, Idris AH, et al. Effects of smaller tidal volumes during basic life support ventilation in patients with respiratory arrest: good ventilation, less risk?[J]. Resuscitation, 1999, 43(1): 25-29. DOI:10.1016/s0300-9572(99)00118-5
[18] Baskett P, Nolan J, Parr M. Tidal volumes which are perceived to be adequate for resuscitation[J]. Resuscitation, 1996, 31(3): 231-234. DOI:10.1016/0300-9572(96)00994-x
[19] Idris AH, Aramendi Ecenarro E, Leroux B, et al. Bag-valve-mask ventilation and survival from out-of-hospital cardiac arrest: a multicenter study[J]. Circulation, 2023, 148(23): 1847-1856. DOI:10.1161/CIRCULATIONAHA.123.065561
[20] Justice JM, Slutsky AS, Stanford N, et al. Assessment of ventilation using adult and pediatric manual resuscitators in a simulated adult patient[J]. Respir Care, 2024, 69(8): 924-930. DOI:10.4187/respcare.11588
[21] Snyder BD, Van Dyke MR, Walker RG, et al. Association of small adult ventilation bags with return of spontaneous circulation in out of hospital cardiac arrest[J]. Resuscitation, 2023, 193: 109991. DOI:10.1016/j.resuscitation.2023.109991
[22] Ishii M, Tsujita K, Seki T, et al. Sex- and age-based disparities in public access defibrillation, bystander cardiopulmonary resuscitation, and neurological outcome in cardiac arrest[J]. JAMA Netw Open, 2023, 6(7): e2321783. DOI:10.1001/jamanetworkopen.2023.21783
[23] Grunau B, Humphries K, Stenstrom R, et al. Public access defibrillators: Gender-based inequities in access and application[J]. Resuscitation, 2020, 150: 17-22. DOI:10.1016/j.resuscitation.2020.02.024
[24] Bray JE, Smyth MA, Perkins GD, et al. Basic life support: 2025 international liaison committee on resuscitation consensus on science with treatment recommendations[J]. Circulation, 2025, 152(16_suppl_1): S34-S71. DOI:10.1161/cir.0000000000001364
[25] Di Maio R, O'Hare P, Crawford P, et al. Self-adhesive electrodes do not cause burning, arcing or reduced shock efficacy when placed on metal items[J]. Resuscitation, 2015, 96: 11. DOI:10.1016/j.resuscitation.2015.09.026
[26] Kramer CE, Wilkins MS, Davies JM, et al. Does the sex of a simulated patient affect CPR?[J]. Resuscitation, 2015, 86: 82-87. DOI:10.1016/j.resuscitation.2014.10.016
[27] Considine J, Couper K, Greif R, et al. Cardiopulmonary resuscitation in obese patients: a scoping review[J]. Resusc Plus, 2024, 20: 100820. DOI:10.1016/j.resplu.2024.100820
[28] The National Safety Council. The leading causes of preventable injury-related death by state [EB/OL]. [2025-10-25]. https://injuryfacts.nsc.org/state-data/state-overview/.
[29] Dunne CL, Cirone J, Blanchard IE, et al. Evaluation of basic life support interventions for foreign body airway obstructions: a population-based cohort study[J]. Resuscitation, 2024, 201: 110258. DOI:10.1016/j.resuscitation.2024.110258
[30] Couper K, Abu Hassan A, Ohri V, et al. Removal of foreign body airway obstruction: a systematic review of interventions[J]. Resuscitation, 2020, 156: 174-181. DOI:10.1016/j.resuscitation.2020.09.007
[31] Desai SC, Chute DJ, Desai BC, et al. Traumatic dissection and rupture of the abdominal aorta as a complication of the Heimlich maneuver[J]. J Vasc Surg, 2008, 48(5): 1325-1327. DOI:10.1016/j.jvs.2008.05.061
[32] Tung PH, Law S, Chu KM, et al. Gastric rupture after Heimlich maneuver and cardiopulmonary resuscitation[J]. Hepatogastroenterology, 2001, 48(37): 109-111.
[33] Norii T, Igarashi Y, Yoshino Y, et al. The effects of bystander interventions for foreign body airway obstruction on survival and neurological outcomes: Findings of the MOCHI registry[J]. Resuscitation, 2024, 199: 110198. DOI:10.1016/j.resuscitation.2024.110198
[34] Cho J, Oh JH, Park YS, et al. Effects of bed height on the performance of chest compressions[J]. Emerg Med J, 2009, 26(11): 807-810. DOI:10.1136/emj.2008.068965
[35] Ho CS, Hsu YJ, Li F, et al. Effect of ambulance stretcher bed height adjustment on CPR quality and rescuer fatigue in a laboratory environment[J]. Int J Med Sci, 2021, 18(13): 2783-2788. DOI:10.7150/ijms.59037
[36] Barcala-Furelos R, Carracedo-Rodríguez E, Lorenzo-Martínez M, et al. Assessment of over-the-head resuscitation method in an inflatable rescue boat sailing at full speed. A non-inferiority pilot study[J]. Am J Emerg Med, 2023, 70: 70-74. DOI:10.1016/j.ajem.2023.05.006
[37] Wallner B, Moroder L, Salchner H, et al. CPR with restricted patient access using alternative rescuer positions: a randomised cross-over manikin study simulating the CPR scenario after avalanche burial[J]. Scand J Trauma Resusc Emerg Med, 2021, 29(1): 129. DOI:10.1186/s13049-021-00944-9
[38] Perkins GD, Stephenson BTF, Smith CM, et al. A comparison between over-the-head and standard cardiopulmonary resuscitation[J]. Resuscitation, 2004, 61(2): 155-161. DOI:10.1016/j.resuscitation.2004.01.006
[39] Aranda-García S, San Román-Mata S, Otero-Agra M, et al. Is the over-the-head technique an alternative for infant CPR performed by a single rescuer? a randomized simulation study with lifeguards[J]. Pediatr Rep, 2024, 16(1): 100-109. DOI:10.3390/pediatric16010010
[40] ĆwiertniaM, KaweckiM, IlczakT, 等. Comparison of standard and over-the-head method of chest compressions during cardiopulmonary resuscitation - a simulation study[J]. BMC Emerg Med, 2019, 19(1): 73. DOI:10.1186/s12873-019-0292-8
[41] Maisch S, Issleib M, Kuhls B, et al. A comparison between over-the-head and standard cardiopulmonary resuscitation performed by two rescuers: a simulation study[J]. J Emerg Med, 2010, 39(3): 369-376. DOI:10.1016/j.jemermed.2009.04.055
[42] Wirmando W, Sampe A, Alfrida A, et al. Comparison of cardiopulmonary resuscitation quality performed by a single rescue with a bag-valve mask device: over-the-head or lateral position?[J]. Clin Epidemiol Glob Health, 2023, 20: 101246. DOI:10.1016/j.cegh.2023.101246
[43] Nasiri E, Nasiri R. A comparison between over-the-head and lateral cardiopulmonary resuscitation with a single rescuer by bag-valve mask[J]. Saudi J Anaesth, 2014, 8(1): 30-37. DOI:10.4103/1658-354X.125923
[44] Miraglia D, Ramzy M. Double external defibrillation for shock-refractory ventricular fibrillation cardiac arrest: a step towards standardization[J]. Am J Emerg Med, 2021, 41: 73-79. DOI:10.1016/j.ajem.2020.12.031
[45] Li YK, He XJ, Li ZY, et al. Double sequential external defibrillation versus standard defibrillation in refractory ventricular fibrillation: a systematic review and meta-analysis[J]. Front Cardiovasc Med, 2022, 9: 1017935. DOI:10.3389/fcvm.2022.1017935
[46] Delorenzo A, Nehme Z, Yates J, et al. Double sequential external defibrillation for refractory ventricular fibrillation out-of-hospital cardiac arrest: a systematic review and meta-analysis[J]. Resuscitation, 2019, 135: 124-129. DOI:10.1016/j.resuscitation.2018.10.025
[47] Miraglia D, Miguel LA, Alonso W. Double defibrillation for refractory in- and out-of-hospital cardiac arrest: a systematic review and meta-analysis[J]. J Emerg Med, 2020, 59(4): 521-541. DOI:10.1016/j.jemermed.2020.06.024
[48] Abuelazm MT, Ghanem A, Katamesh BE, et al. Defibrillation strategies for refractory ventricular fibrillation out-of-hospital cardiac arrest: a systematic review and network meta-analysis[J]. Noninvasive Electrocardiol, 2023, 28(5): e13075. DOI:10.1111/anec.13075
[49] Cheskes S, Verbeek PR, Drennan IR, et al. Defibrillation strategies for refractory ventricular fibrillation[J]. N Engl J Med, 2022, 387(21): 1947-1956. DOI:10.1056/NEJMoa2207304
[50] Cheskes S, Drennan IR, Turner L, et al. The impact of alternate defibrillation strategies on shock-refractory and recurrent ventricular fibrillation: a secondary analysis of the DOSE VF cluster randomized controlled trial[J]. Resuscitation, 2024, 198: 110186. DOI:10.1016/j.resuscitation.2024.110186
[51] Taylor TG, Melnick SB, Chapman FW, et al. An investigation of inter-shock timing and electrode placement for double-sequential defibrillation[J]. Resuscitation, 2019, 140: 194-200. DOI:10.1016/j.resuscitation.2019.04.042
[52] Johnson EE, Alferness CA, Wolf PD, et al. Effect of pulse separation between two sequential biphasic shocks given over different lead configurations on ventricular defibrillation efficacy[J]. Circulation, 1992, 85(6): 2267-2274. DOI:10.1161/01.cir.85.6.2267
[53] Rahimi M, Drennan IR, Turner L, et al. The impact of double sequential shock timing on outcomes during refractory out-of-hospital cardiac arrest[J]. Resuscitation, 2024, 194: 110082. DOI:10.1016/j.resuscitation.2023.110082
[54] Berg KM, Bray JE, Ng KC, et al. 2023 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: summary from the basic life support; advanced life support; pediatric life support; neonatal life support; education, implementation, and teams; and first aid task forces[J]. Resuscitation, 2024, 195: 109992. DOI:10.1016/j.resuscitation.2023.109992
[55] Vallentin MF, Granfeldt A, Klitgaard TL, et al. Intraosseous or intravenous vascular access for out-of-hospital cardiac arrest[J]. N Engl J Med, 2025, 392(4): 349-360. DOI:10.1056/NEJMoa2407616
[56] Ko YC, Lin HY, Huang EP, et al. Intraosseous versus intravenous vascular access in upper extremity among adults with out-of-hospital cardiac arrest: cluster randomised clinical trial (VICTOR trial)[J]. BMJ, 2024, 386: e079878. DOI:10.1136/bmj-2024-079878
[57] Couper K, Ji C, Deakin CD, et al. A randomized trial of drug route in out-of-hospital cardiac arrest[J]. N Engl J Med, 2025, 392(4): 336-348. DOI:10.1056/NEJMoa2407780
[58] Couper K, Andersen LW, Drennan IR, et al. Intraosseous and intravenous vascular access during adult cardiac arrest: a systematic review and meta-analysis[J]. Resuscitation, 2025, 207: 110481. DOI:10.1016/j.resuscitation.2024.110481
[59] Stewart C, Chan PS, Kennedy K, et al. Hospital variation in epinephrine administration before defibrillation for cardiac arrest due to shockable rhythm[J]. Crit Care Med, 2024, 52(6): 878-886. DOI:10.1097/CCM.0000000000006203
[60] Fernando SM, Mathew R, Sadeghirad B, et al. Epinephrine in out-of-hospital cardiac arrest: a network meta-analysis and subgroup analyses of shockable and nonshockable rhythms[J]. Chest, 2023, 164(2): 381-393. DOI:10.1016/j.chest.2023.01.033
[61] Elbadawi A, Tan BE, Assaf Y, et al. Meta-analysis of efficacy of vasopressin during cardiopulmonary resuscitation[J]. Am J Cardiol, 2022, 181: 122-129. DOI:10.1016/j.amjcard.2022.06.042
[62] An HR, Han YR, Wang TH, et al. Meta-analysis of the factors influencing the restoration of spontaneous circulation after cardiopulmonary resuscitation[J]. Front Physiol, 2022, 13: 834352. DOI:10.3389/fphys.2022.834352
[63] Laurikkala J, Wilkman E, Pettilä V, et al. Mean arterial pressure and vasopressor load after out-of-hospital cardiac arrest: Associations with one-year neurologic outcome[J]. Resuscitation, 2016, 105: 116-122. DOI:10.1016/j.resuscitation.2016.05.026
[64] Tabi M, Burstein BJ, Ahmed A, et al. Shock severity and hospital mortality in out of hospital cardiac arrest patients treated with targeted temperature management[J]. Shock, 2021, 55(1): 48-54. DOI:10.1097/SHK.0000000000001600
[65] Jentzer JC, Henry TD, Barsness GW, et al. Influence of cardiac arrest and SCAI shock stage on cardiac intensive care unit mortality[J]. Cathet Cardio Intervent, 2020, 96(7): 1350-1359. DOI:10.1002/ccd.28854
[66] Roberts BW, Kilgannon JH, Hunter BR, et al. Association between elevated mean arterial blood pressure and neurologic outcome after resuscitation from cardiac arrest: results from a multicenter prospective cohort study[J]. Crit Care Med, 2019, 47(1): 93-100. DOI:10.1097/CCM.0000000000003474
[67] Branch KR, Nguyen ML, Kudenchuk PJ, et al. Head-to-pelvis CT imaging after sudden cardiac arrest: Current status and future directions[J]. Resuscitation, 2023, 191: 109916. DOI:10.1016/j.resuscitation.2023.109916
[68] Petek BJ, Erley CL, Kudenchuk PJ, et al. Diagnostic yield of non-invasive imaging in patients following non-traumatic out-of-hospital sudden cardiac arrest: a systematic review[J]. Resuscitation, 2019, 135: 183-190. DOI:10.1016/j.resuscitation.2018.09.004
[69] Branch KRH, Gatewood MO, Kudenchuk PJ, et al. Diagnostic yield, safety, and outcomes of Head-to-pelvis sudden death CT imaging in post arrest care: The CT FIRST cohort study[J]. Resuscitation, 2023, 188: 109785. DOI:10.1016/j.resuscitation.2023.109785
[70] Tam J, Soufleris C, Ratay C, et al. Diagnostic yield of computed tomography after non-traumatic out-of-hospital cardiac arrest[J]. Resuscitation, 2023, 189: 109898. DOI:10.1016/j.resuscitation.2023.109898
[71] Karatasakis A, Sarikaya B, Liu LD, et al. Prevalence and patterns of resuscitation-associated injury detected by head-to-pelvis computed tomography after successful out-of-hospital cardiac arrest resuscitation[J]. J Am Heart Assoc, 2022, 11(3): e023949. DOI:10.1161/JAHA.121.023949
[72] Ratay C, Elmer J, Callaway CW, et al. Brain computed tomography after resuscitation from in-hospital cardiac arrest[J]. Resuscitation, 2024, 198: 110181. DOI:10.1016/j.resuscitation.2024.110181
[73] Jung WJ, Cha KC, Kim YW, et al. Intra-arrest transoesophageal echocardiographic findings and resuscitation outcomes[J]. Resuscitation, 2020, 154: 31-37. DOI:10.1016/j.resuscitation.2020.06.035
[74] Hafner C, Manschein V, Klaus DA, et al. Live stream of prehospital point-of-care ultrasound during cardiopulmonary resuscitation - A feasibility trial[J]. Resuscitation, 2024, 194: 110089. DOI:10.1016/j.resuscitation.2023.110089
[75] Liu LD, Karatasakis A, Kudenchuk PJ, et al. Scoping review of echocardiographic parameters associated with diagnosis and prognosis after resuscitated sudden cardiac arrest[J]. Resuscitation, 2023, 184: 109719. DOI:10.1016/j.resuscitation.2023.109719
[76] Ho YJ, Sung CW, Chen YC, et al. Performance of intra-arrest echocardiography: a systematic review[J]. West J Emerg Med, 2024, 25(2): 166-174. DOI:10.5811/westjem.18440
[77] Dankiewicz J, Cronberg T, Lilja G, et al. Hypothermia versus normothermia after out-of-hospital cardiac arrest[J]. N Engl J Med, 2021, 384(24): 2283-2294. DOI:10.1056/NEJMoa2100591
[78] Granfeldt A, Holmberg MJ, Nolan JP, et al. Temperature control after adult cardiac arrest: an updated systematic review and meta-analysis[J]. Resuscitation, 2023, 191: 109928. DOI:10.1016/j.resuscitation.2023.109928
[79] Hassager C, Schmidt H, Møller JE, et al. Duration of device-based fever prevention after cardiac arrest[J]. N Engl J Med, 2023, 388(10): 888-897. DOI:10.1056/NEJMoa2212528
[80] Kirkegaard H, Søreide E, de Haas I, et al. Targeted temperature management for 48 vs 24 hours and neurologic outcome after out-of-hospital cardiac arrest: a randomized clinical trial[J]. JAMA, 2017, 318(4): 341-350. DOI:10.1001/jama.2017.8978
[81] Nielsen N, Wetterslev J, Cronberg T, et al. Targeted temperature management at 33℃ versus 36℃ after cardiac arrest[J]. N Engl J Med, 2013, 369(23): 2197-2206. DOI:10.1056/nejmoa1310519
[82] Grossestreuer AV, Gaieski DF, Donnino MW, et al. Magnitude of temperature elevation is associated with neurologic and survival outcomes in resuscitated cardiac arrest patients with postrewarming pyrexia[J]. J Crit Care, 2017, 38: 78-83. DOI:10.1016/j.jcrc.2016.11.003
[83] Picetti E, Antonini MV, Bartolini Y, et al. Delayed fever and neurological outcome after cardiac arrest: a retrospective clinical study[J]. Neurocrit Care, 2016, 24(2): 163-171. DOI:10.1007/s12028-016-0251-0
[84] Gebhardt K, Guyette FX, Doshi AA, et al. Prevalence and effect of fever on outcome following resuscitation from cardiac arrest[J]. Resuscitation, 2013, 84(8): 1062-1067. DOI:10.1016/j.resuscitation.2013.03.038
[85] Bro-Jeppesen J, Hassager C, Wanscher M, et al. Post-hypothermia fever is associated with increased mortality after out-of-hospital cardiac arrest[J]. Resuscitation, 2013, 84(12): 1734-1740. DOI:10.1016/j.resuscitation.2013.07.023
[86] Firdaus I, Yuniadi Y, Andriantoro H, et al. Early insertion of intra-aortic balloon pump after cardiac arrest on acute coronary syndrome patients: a randomized clinical trial[J]. Cardiol Cardiovascmed, 2019, 3(4): 193-203. DOI:10.26502/fccm.92920067
[87] Banning AS, Sabaté M, Orban M, et al. Venoarterial extracorporeal membrane oxygenation or standard care in patients with cardiogenic shock complicating acute myocardial infarction: the multicentre, randomised EURO SHOCK trial[J]. EuroIntervention, 2023, 19(6): 482-492. DOI:10.4244/eij-d-23-00204
[88] Thiele H, Zeymer U, Akin I, et al. Extracorporeal life support in infarct-related cardiogenic shock[J]. N Engl J Med, 2023, 389(14): 1286-1297. DOI:10.1056/NEJMoa2307227
[89] Møller JE, Engstrøm T, Jensen LO, et al. Microaxial flow pump or standard care in infarct-related cardiogenic shock[J]. N Engl J Med, 2024, 390(15): 1382-1393. DOI:10.1056/NEJMoa2312572
[90] Drennan IR, Berg KM, Böttiger BW, et al. Advanced life support: 2025 international liaison committee on resuscitation consensus on science with treatment recommendations[J]. Circulation, 2025, 152(16_suppl_1): S72-S115. DOI:10.1161/cir.0000000000001360
[91] Thiele H, Møller JE, Henriques JPS, et al. Temporary mechanical circulatory support in infarct-related cardiogenic shock: an individual patient data meta-analysis of randomised trials with 6-month follow-up[J]. Lancet, 2024, 404(10457): 1019-1028. DOI:10.1016/S0140-6736(24)01448-X
[92] Watanabe A, Miyamoto Y, Ueyama HA, et al. Impacts of hospital volume and patient-hospital distances on outcomes of older adults receiving percutaneous microaxial ventricular assist devices for cardiogenic shock[J]. Circ Cardiovasc Interv, 2024, 17(12): e014738. DOI:10.1161/CIRCINTERVENTIONS.124.014738
[93] Sandroni C, D'Arrigo S, Cacciola S, et al. Prediction of good neurological outcome in comatose survivors of cardiac arrest: a systematic review[J]. Intensive Care Med, 2022, 48(4): 389-413. DOI:10.1007/s00134-022-06618-z
[94] Bang HJ, Youn CS, Sandroni C, et al. Good outcome prediction after out-of-hospital cardiac arrest: a prospective multicenter observational study in Korea (the KORHN-PRO registry)[J]. Resuscitation, 2024, 199: 110207. DOI:10.1016/j.resuscitation.2024.110207