心脏骤停(cardiac arrest, CA)是指各种原因导致心脏泵血功能突然终止,大动脉搏动和心音消失,心脏和大脑等重要器官严重缺血缺氧,最终引起患者死亡。据报道欧美院内成年心脏骤停(in-hospital cardiac arrest, IHCA)患者发病率为0.3%~0.9%,经心肺复苏后35%~44%的患者可恢复自主循环,环(return of spontaneous circulation, ROSC),出院生存率为7%~26%[1-5]。与欧美国家比较,我国IHCA发病率高而出院生存率低,IHCA发生率为1.75%,出院存活率仅为9.7%[6]。此外,我国人口基数大,人口老龄化日益加重,CA形势严峻,已成为严重的公共卫生问题[7]。
高质量心肺复苏(cardiopulmonary resuscitation, CPR)是挽救CA患者最常用的办法,然而CA患者神经功能预后与患者基础疾病、病因、年龄、性别、有无目击者、复苏持续时间和是否为可电击心律等诸多因素相关[8-11],复苏后患者的神经功能存在显著差异,部分患者出院后长期遗留中度到重度神经功能障碍[12]。持续动态评估复苏后昏迷患者神经功能,指导临床决策,防止对苏醒无望患者的过度治疗。国内外指南和共识推荐采用神经系统查体、神经影像学、电生理检查和血清标志物等方法评估复苏后患者的神经功能[1, 13]。然而目前缺乏规范化和标准化流程,各研究间报道的敏感度并不完全相同,指南对也未详尽描述各个评估方法的影响因素和注意事项。本综述基于现有的研究报道,结合CA后脑组织病理生理改变,总结各项神经功能预后评估方法的特征、优势和不足,为临床医生科学评估心肺复苏后患者的神经功能提供参考。
1 神经功能预后评分标准CA患者神经功能预后评估主要有格拉斯哥-匹兹堡脑功能评分(cerebral performance category, CPC)和改良Rankin评分表(modified rankin scale, mRS),前者将CPC 1~2级视为神经功能预后良好,3~5级视为神经功能预后不良;后者将mRS≤4视为是神经功能预后良好,mRS > 4视为神经功能预后不良。目前预后判断以CPC报道为多,时间以出院时为多。
2 心肺复苏后昏迷患者神经功能评估 2.1 神经系统查体CA后心脏快速恢复自主循环,患者神经系统功能可逐渐恢复。首先是脑干反射,其次是疼痛刺激运动反应,最后是皮质活动和意识。若循环终止时间延长,脑功能恢复将延迟或不能完全恢复,可导致脑干反射无法恢复,疼痛刺激无反应[14]。神经系统查体是公认为评估神经功能预后最简单有效的方法,可直接反应大脑功能。但是神经系统检查易受目标温度管理(target temperature management, TTM)和镇静镇痛药物影响,因此神经系统查体评估CA患者预后的准确性仍存在争议。
神经系统查体主要包括瞳孔对光反射、角膜反射、眼反射、GCS-M评分和肌阵挛等[15]。
复苏后昏迷患者双侧瞳孔对光反射消失常提示预后不良,其敏感度和特异度与病程相关[16]。在复苏后第一天结果常不可靠,在72 h特异度最高[17]。与传统检查方法比较,瞳孔计可测量并分析ROSC患者的瞳孔大小、收缩百分比、潜伏期、收缩速率和舒张速率等参数,因而预测脑损伤的准确性更高[18-19]。角膜反射消失同样与神经功能预后不良有关,但更易受到神经肌肉阻滞剂的影响,假阳性率(false positive rate, FPR)达到4%[20]。与前两种方法比较,眼反射判断复苏昏迷患者的预后敏感度较差,大约20%~30%的眼反射消失的患者出现预后不良[21]。
疼痛刺激运动反应(glasgow coma scale-motor response, GCS-M)检查需要选择适宜的时间和刺激强度,疼痛刺激反应消失或四肢曲张是神经功能预后不良反应的表现。Lee等[15]研究比较GCS-M、瞳孔对光反射、角膜反射和呼吸频率在评估CA患者神经功能预后的准确性,结果发现GCS-M大于2分预测神经功能预后良好特异度最高,为96.5%。GCS-M评分预测的准确性与病程有关,一项回顾性研究分析24 h和72 h的GCS-M评分与CA患者预后的关系,结果发现前者GCS-M≤3分的患者的存活率是17%,后者是20%[22]。与角膜反射相似,GCS-M也容易受到镇静药和神经肌肉阻滞剂的干扰。因此,疼痛刺激运动反应消失不代表神经功能预后不良,而疼痛刺激运动反应存在也不一定确认为ROSC患者神经功能预后良好。肌阵挛是中枢神经系统损伤的征象,为突发、短暂、不自主的肌肉收缩。肌阵挛持续30分钟以上称为癫痫持续状态。心肺复苏后患者出现癫痫活动是预后不良的征象。Lybeck等[23]总结939例CA后TTM患者的脑电图,结果发现29%的患者出现癫痫活动,表现为肌阵挛和强直性阵挛发作。出现肌阵挛神经功能预后不良患者比例为90%,而强直性阵挛发作比例为72%。由于TTM是CA后脑功能保护的重要的治疗措施,而TTM影响镇静药和神经肌肉阻滞剂代谢,上述药物的残留势必会影响神经系统查体的结果。因此,国外研究推荐复苏后3~5 d进行神经系统查体[24]。
2.2 影像学检查 2.2.1 头部CT检查头部CT是心肺复苏后患者重要的影像学检查,广泛用于排查CA颅内病变、量化脑损伤程度和评估心肺复苏后神经功能预后。CA后大脑出现缺血性损伤,脑组织代谢障碍,活性氧和自由基增加,神经元和胶质细胞膜上的钠泵失活,血脑屏障受损,最终导致脑细胞弥漫性水肿[25]。与灰质比较,大脑白质代谢旺盛,CA后更早发生细胞水肿。CA 1小时后灰质白质间区别消失,24 h内可在CT图像上观察到,这种改变可用灰质白质比值(gray-white matter ratio, GWR)进行量化[24-25]。心肺复苏时间延长,大脑缺血缺氧时间延长,脑水肿加重,GWR也逐渐降低。在CPR小于10 min时,GWR < 1.20患者比例约占2%,超过40 min后GWR < 1.20的患者比例将达到31%[26]。
GWR评估复苏后患者神经功能预后目前尚无规范化和统一性的标准,各研究间纳入的患者数量和标准不一,复苏到CT检查时间、测量方法、测量部位和评估阈值也不相同,因而其敏感度差异较大。测量方法有肉眼定性、手动测量和自动分析,测量部位有全脑、脑室和基底节区。一项文献综述分析GWR判断心肺复苏后患者敏感度3.3%-88%,GWR阈值从1.06-1.25不等[27]。Inamasu等[28]以肉眼观察尾状核和内囊后肢灰度差异消失为标准,在评估窒息性CA患者预后的敏感度可达到100%。但头部CT图像上肉眼很难准确区分大脑灰质和白质区域,标准的手动测量常选择胼胝体、内囊后肢、半卵圆中心的内皮质、高额顶叶内侧皮质、内囊后肢、胼胝体、半卵圆中心白质和高额顶叶白质8个解剖结构来代表全脑灰质和白质,在上述区域手动画圈并测量标记范围内的灰度值,进而计算出GWR。根据手动测量部位、白质和灰质的组合情况,GWR可分为全脑、皮质区、基底节区、尾状核/胼胝体、壳核/胼胝体、尾状核/内囊后肢和壳核/内囊后肢等。
一项回顾性研究比较2种不同预后ROSC患者头部CT图像上8个解剖结构的灰度值和GWR,预后不良组患者的尾状核、壳核、半卵圆中心的内侧皮质和高额顶叶内侧皮质灰质区域的灰度值明显减少,全脑GWR、基底节GWR和皮质区GWR也明显减少[29]。Lee等[30]以相同方法进一步计算GWR评估体外膜肺氧合(extracorporeal membrane oxygenation, ECMO)治疗CA患者的不良预后的敏感度,发现以全脑GWR < 1.23为阈值,敏感度为76%,而以基底节区GWR < 1.24为阈值,敏感度高达88%。与Lee等报道相似,Hwan等[31]报道以基底节GWR < 1.23为阈值,敏感度为83.8%。与上述前两位报道结果不同,Lee等[32]分析了GWR评估院外心源性CA患者预后的敏感度,全脑GWR(阈值1.13)和基底节GWR(阈值1.10)的敏感度均是3.5%。进一步比较发现,除受纳入患者的疾病和评估阈值不同之外,ROSC到CT检查时间可能是造成研究间敏感度差异的主要原因。Streitberger等[33]将骤停到CT时间分为0~6 h、6~24 h和 > 24 h三组。在同一阈值下0~6 h组为20%,6~24 h组的敏感度为10%,而超过24 h组敏感度为41%。因此,采用GWR评估复苏后患者预后选择在骤停24小时后行头部CT检查敏感度更高[26]。标准手动法检测全脑GWR需要先在CT图像标记16个区域,操作费时。Genstch等[34]以壳核和内囊后肢来简化测量过程,结果发现壳核/内囊后肢GWR与全脑GWR、基底节GWR比较,三者的AUC差异无统计学意义,壳核/内囊后肢的GWR与基底节区的GWR敏感度也相同。一项meta分析比较了全脑、皮质区(cerebrum)、基底节和壳核/内囊后肢的GWR评估ROSC患者预后的敏感度,发现基底节GWR的预测准确性最高[35]。手动测量易受研究者主观影响,为消除“自我实现价值”的效应,概率脑图谱技术可实现CA大脑CT图像配准和分区[36]。以这种自动分析技术测量出的全脑GWR评估不良预后患者的敏感度可达到92.7%[37]。
2.2.2 头部MRICA后导致ATP依赖性的水分子运动障碍,水分子运动减少在MRI的弥散加权像(diffusion weight image, DWI)上表现为高信号区,严重程度可用表面扩散系数(apparent diffusion coefficient, ADC)进行量化。正常范围ADC为700~800 mm2/s,ADC下降常提示预后不良。与传统增强CT和普通MRI比较,DWI具有更高的敏感度和特异度,是检测神经细胞水肿的最佳方法[25]。
Jarnum等[38]比较不同预后ROSC患者的MRI图像变化,DWI图像上死亡患者的急性缺血病灶主要位于顶叶、枕叶,缺血病灶位于血管间的边界,而康复患者的急性病灶主要集中在基底神经节、额叶和小脑,幸存者顶叶和颞叶均没有发现扩散减少的病灶。Arbelaez等[39]研究ROSC患者不同时间段头部MRI的影像学特征,在超急性期(< 24 h)小脑、基底节和大脑皮层DWI可发现异常信号,而T1和T2加权像无异常改变。在亚急性期早期(24 h~20 d)T2、T2和DWI加权像上均出现异常信号;亚急性期晚期(14~20 d)DWI图像上大脑白质呈弥漫性水肿,但是普通MRI图像无明显异常。慢性期由于细胞坏死,细胞外空间增加,在T2加权像上灰质中高信号持续存在,T1加权像上大脑皮层出现片状坏死。基于CA后颅脑MRI的影像学变化规律,研究者认为复苏后2~5 d行MRI检查敏感度最高[40]。由脑缺血缺氧病理生理机制可知,不同预后、不同时间和颅内不同结构的MRI影像学表现也不完全一样。最近一项研究报道预后较好患者脑组织ADC < 650×10-6 mm2/s的比例明显高于预后不良组患者,而以超过6%脑组织的ADC < 550×10-6 mm2/s为预后不良的标准,敏感度和特异度分别是67%和96%[41]。Kim等[42]比较了基底节区和大脑皮层的敏感度,发现枕叶大脑皮层敏感度高达90.6%,而尾状核的敏感度仅为46.9%。与上述研究方法不同,Karen等[43]采用定性评分系统分析DWI和FLAIR图像上病灶改变,根据病灶严重程度评分为0~4分,结果发现大脑皮层评估预后不良的敏感度为66%。虽然MRI检查敏感度较高,且不受镇静药和神经肌肉阻滞剂的影响,但对患者要求较高,生命体征不稳定或接受ECMO治疗的复苏患者均难以行MRI检查,目前纳入研究患者数量较少,敏感度差异较大,因此其评估的准确性有待进一步研究。
2.3 神经电生理检查 2.3.1 脑电图脑电图记录跨神经元膜电压变化产生的电活动,能反映神经元活动。根据频率,脑电波分为超慢波(< 0.2 Hz)、δ波(0.2~3.5 Hz)、γ波(30~90 Hz)、θ波(4.0~7.5)、α波(8~13)、β波(14~30 Hz)和高频振荡。正常人主要是α节律、mu节律和慢波睡眠时的纺锤状波[44]。心肺复苏后昏迷患者脑电图背景可出现大范围异常,包括频率异常和背景连续性异常,与缺氧性脑损伤严重程度相关[45]。复苏24小时后若脑电图出现爆发- 抑制、广泛性背景抑制和抑制背景下的全面周期性放电常提示预后不良,但对于正常电压背景下周期性痫样放电、低电压和非连续性背景等中度异常脑电图评估预后的可靠性仍有争议[46]。
Sethi等[47]分析高度恶性和恶性脑电图与ROSC患者预后关系,前者主要包括无放电的抑制性背景、有放电的连续性周期性背景和爆炸性背景脑电图,后者主要包括恶性周期性节律性、恶性背景性和无反应性脑电图,发现超过一类高度恶性脑电图评估预后不良的敏感度和特异度分别是50%和100%,而超过一类恶性脑电图的敏感度和特异度分别是99%和48%。有意思的是,无高度恶性表现的心肺复苏患者并不意味着预后良好,也可能出现神经功能预后不良或者死亡[48]。连续脑电图可记录脑功能恢复过程和捕捉癫痫活动,成为优选方法。在连续脑电图中越早出现癫痫,则预后越差;相反24 h恢复连续性背景脑电图提示预后较好[49]。Tjepkema等[50]联合连续脑电图和脑功能恢复指数评估CA后12小时患者预后,其敏感度可达到56%。
以脑电图评估预后的最佳时间仍不确定,脑电图专业术语主要来源于美国神经生理学会,但是对于无反应性癫痫持续状态和爆发-抑制等异常脑电图分类仍未达成共识。复苏后脑功能逐渐恢复,因此脑电图应该尽早、连续或间断重复检测,对于接受目标温度管理的患者应延长至复苏后72小时[46]。
2.3.2 躯体感觉诱发电位躯体感觉诱发电位(somatosensory evoked potential, SSEP)是通过电刺激正中神经获得的,受镇静药和TTM影响小。其中,双侧N20(神经刺激20 ms预计出现)缺失被认为是预后不良的可靠指标。一项多中心回顾性研究分析了262例CA患者的SSEP,结果发现双侧N20缺失患者占48.5%,双侧N20缺失的敏感度为71%,假阳性率为0%[51]。与上述报道结果不同,Rossetti等[52]报道了双侧N20缺失在评估CA患者预后的敏感度为46%。法国一项研究以N20的振幅进行简单的定量分析,发现振幅 < 0.62 μV的复苏患者预后较好[53]。对于SSEP评估CA患者预后的时间也有争议,有研究者推荐复苏后24 h进行SSEP检查,但是也有研究报道在TTM治疗的CA患者中,复苏后48~72 h其评估预后不良的准确率最高[54]。
2.4 生物标志物CA后大脑缺血缺氧,导致神经细胞死亡并释放各种生物标志物入血,神经元特异性烯醇化酶(neuron-specific enolase, NSE)、S100钙结合蛋白B(S100 calcium-binding protein B, S-100B)、神经丝轻链(neurofilament light, Nfl)、泛素C末端水解酶-L1(ubiquitin C-terminal hydrolase L1, UCH-L1)、Tau和和micro RNA是近年来研究的焦点[55-57]。其中,NSE被欧洲复苏委员会/欧洲危重病医学会视为评估预后的唯一标志物。NSE来源于神经元,S-100B来源于星形胶质细胞和施旺细胞。与神经影像学比较,生物标志物具有取样方便,可动态监测,检测结果不受镇静药物影响的优势。
血清中NSE和S-100B升高预示ROSC患者预后不良。值得注意的是,NSE的准确性受检测时间、患者年龄和阈值等因素影响,在脑外伤患者中普通升高,易出现假阳性[58-60]。Wihersaari等[61]报道20 min内ROSC患者间差异无统计学意义,而20分钟后不同预后组患者血液中NSE存在明显差异。但是年龄超过72岁的患者,其血清NSE值与预后无明显相关性。Luescher等[62]比较不同时间段NSE预测心肺复苏患者神经功能预后的敏感度,结果发现除复苏后第7天之外,死亡组患者的NSE值均高于存活组,第3天NSE敏感度最高。与上述研究方法相似,以NSE预测心肺复苏患者30天后的神经功能预后,结果发现第一天NSE > 20.4 mcg/L敏感度和特异度为63.3%和82.1%,第2天NSE > 29.0 mcg/L的敏感度和特异度为72.5%和94.4%,第三天NSE > 20.7 mcg/L的敏感度和特异度分别为94.4%和86.7%[63]。最近一项研究分析心肺复苏患者血液中NSE与脑电图的相关性,在早期和晚期脑电图检查中,无反应性患者中NSE均显著高于有反应的患者[64]。与NSE相似,S-100B的敏感度也受时间和预后影响,一项有关院外心脏骤停(out-of-hospital cardiac arrest, OHCA)的研究发现入院时NSE预测敏感度仅为19%,而24 h和48 h后均为43%,72 h为32%[65]。与Duez等结果不同,Akin等[66]报道复苏后第3天S-100B > 0.123 μg/L预测神经功能预后不良的敏感度和特异度分别是61.4%和76.0%。最近一项研究发现,在OHCA昏迷患者中,预后不良组患者的NFL和GFAP显著升高,在48小时预测神经功能的准确性NFL和GFAP均优于NSE,但是72 h只有NFL优于NSE[67]。受限于样本量较小和缺乏前瞻性验证,其研究结果有待进一步明确。
除NSE和S-100B外,目前还发现miR-124、miR-122和miR-21等小分子RNA也参与全身缺血再灌注过程,成为评估CA患者预后的新型标志物[68-70]。Wander等[69]分析了心源性猝死患者血清中45种microRNA变化,结果发现存活出院患者的miR-135a和miR-9-3p较院内死亡患者明显减少。Beske等[71]发现OHCA患者中血清miR-9-3p含量不受年龄、性别影响,复苏48小时后达峰值,预测神经功能预后的敏感度和特异度39%和97%。与上述研究结果相似,Devaux等[72]证实心肺复苏预后不良患者中miR-124-3p水平明显升高,log miR-124-3p超过1.63是CA患者死亡危险因素。
2.5 多模式评估采用单一指标评估预后可能出现预测结果不准确,多模式联合评估可弥补单一指标的不足,提高预测结果的准确性[73, 74]。一项回顾性研究发现,壳核/胼胝体比值预测CA患者预后不良的敏感度为52.9%,联合NSE后敏感度增加到78.6%[75]。Bevers等[76]联合神经系统查体、MRI和脑电图,脑电图预测神经功能预后不良的特异度为77.5%,联合运动查体和颅脑MRI弥散系数后特异度增加至91.1%。与上述两项结果相似,Wu等[77]联合GCS评分和壳核/内囊后肢的GWR预测CA患者预后不,敏感度从25%上升到100%。
3 结语虽然评估CA患者神经功能预后的方法较多,但是各有利弊。神经系统查体评估神经功能预后虽然方便易行,但是眼反射、角膜反射和疼痛刺激运动反应易受镇静药和神经肌肉阻滞剂的影响;CT评估预后特异度好,但是敏感度不高,受时间、测量方法和部位等因素影响,目前对于评估预后不良GWR阈值也未达成共识。MRI对大脑缺血改变敏感,但是对患者要求较高,复苏到头部MRI检查时间较CT明显偏晚。脑电图结果受镇静药影响,需专业解读,脑电图预后评估的适宜检查时间也存在争议。NSE和S-100血清标志物取样方便,不受镇静药物影响,但是不同时间点敏感度也不一样,也没有统一的标准。
多模式评估可以弥补各自不足,综合各项方法的优点,被多位研究者推荐[24, 78]。具体过程为在目标温度管理过程中观察ROSC患者癫痫发作情况,1~2 d后行头部CT检查,若GWR下降则提示预后不良。2 d后复温,待镇静药物完全代谢,于第3天行脑电图、躯体感觉诱发电位和神经系统检查,若出现双侧瞳孔反射消失或角膜反射消失或者双侧N20缺失,可能预后不良。若未出现上述现象,继续观察24 h后再评估,完善MRI和血清NSE检查。若出现下面2项及以上,则提示预后不良:①复苏48 h内出现癫痫持续状态;②NSE显著增高;③脑电图为无反应性爆发-抑制或癫痫持续状态;④MRI或CT提示弥漫性缺氧损伤[24, 79]。
总之,CA患者恢复自主循环后,神经元细胞活动和脑干反射动态恢复,镇痛和肌肉阻滞剂均会影响评估结果。临床医生必须多模式、连续和动态评估病情变化,才能准确的预测神经功能预后。
利益冲突 所有作者声明无利益冲突
[1] | Gräsner JT, Herlitz J, Tjelmeland IBM, et al. European resuscitation council guidelines 2021: epidemiology of cardiac arrest in Europe[J]. Resuscitation, 2021, 161: 61-79. DOI:10.1016/j.resuscitation.2021.02.007 |
[2] | Andersen LW, Holmberg MJ, Berg KM, et al. In-hospital cardiac arrest: a review[J]. JAMA, 2019, 321(12): 1200-1210. DOI:10.1001/jama.2019.1696 |
[3] | Alao DO, Mohammed NA, Hukan YO, et al. The epidemiology and outcomes of adult in-hospital cardiac arrest in a high-income developing country[J]. Resusc Plus, 2022, 10: 100220. DOI:10.1016/j.resplu.2022.100220 |
[4] | Ehlenbach WJ, Barnato AE, Randall Curtis J, et al. Epidemiologic study of in-hospital cardiopulmonary resuscitation in the elderly[J]. N Engl J Med, 2009, 361(1): 22-31. DOI:10.1056/NEJMoa0810245 |
[5] | Adamski J, Nowakowski P, Goryński P, et al. Incidence of in-hospital cardiac arrest in Poland[J]. Anaesthesiol Intensive Ther, 2016, 48(5): 288-293. DOI:10.5603/AIT.a2016.0054 |
[6] | Shao F, Li CS, Liang LR, et al. Incidence and outcome of adult in-hospital cardiac arrest in Beijing, China[J]. Resuscitation, 2016, 102: 51-56. DOI:10.1016/j.resuscitation.2016.02.002 |
[7] | Zheng JQ, Lv CZ, Zheng W, et al. Incidence, process of care, and outcomes of out-of-hospital cardiac arrest in China: a prospective study of the BASIC-OHCA registry[J]. Lancet Public Health, 2023, 8(12): e923-e932. DOI:10.1016/S2468-2667(23)00173-1 |
[8] | Allencherril J, Lee PYK, Khan K, et al. Etiologies of in-hospital cardiac arrest: a systematic review and meta-analysis[J]. Resuscitation, 2022, 175: 88-95. DOI:10.1016/j.resuscitation.2022.03.005 |
[9] | Penketh J, Nolan JP. In-hospital cardiac arrest: the state of the art[J]. Crit Care, 2022, 26(1): 376. DOI:10.1186/s13054-022-04247-y |
[10] | Grandbois van Ravenhorst C, Schluep M, Endeman H, et al. Prognostic models for outcome prediction following in-hospital cardiac arrest using pre-arrest factors: a systematic review, meta-analysis and critical appraisal[J]. Crit Care, 2023, 27(1): 32. DOI:10.1186/s13054-023-04306-y |
[11] | Maskell KF, Ferguson NM, Bain J, et al. Survival after cardiac arrest: ECMO rescue therapy after amlodipine and metoprolol overdose[J]. Cardiovasc Toxicol, 2017, 17(2): 223-225. DOI:10.1007/s12012-016-9362-2 |
[12] | Willanger R, Klee A, Lindeneg O, et al. A neuropsychological study of cerebral anoxic sequelae of cardiac arrest[J]. Acta Neurol Scand, 1970, 46(S43): 103-104. DOI:10.1111/j.1600-0404.1970.tb02175.x |
[13] | Lavonas EJ, Akpunonu PD, Arens AM, et al. 2023 American heart association focused update on the management of patients with cardiac arrest or life-threatening toxicity due to poisoning: an update to the American heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2023, 148(16): e149-e184. DOI:10.1161/CIR.0000000000001161 |
[14] | Cronberg T, Brizzi M, Liedholm LJ, et al. Neurological prognostication after cardiac arrest: recommendations from the Swedish resuscitation council[J]. Resuscitation, 2013, 84(7): 867-872. DOI:10.1016/j.resuscitation.2013.01.019 |
[15] | Lee JS, Bang HJ, Youn CS, et al. Prognostic performance of initial clinical examination in predicting good neurological outcome in cardiac arrest patients treated with targeted temperature management[J]. Ther Hypothermia Temp Manag, 2024, 14(1): 24-30. DOI:10.1089/ther.2023.0002 |
[16] | Bunya N, Ohnishi H, Kasai T, et al. Prognostic significance of signs of life in out-of-hospital cardiac arrest patients undergoing extracorporeal cardiopulmonary resuscitation[J]. Crit Care Med, 2024, 52(4): 542-550. DOI:10.1097/CCM.0000000000006116 |
[17] | Wijdicks EM, Hijdra A, Young GB, et al. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the quality standards subcommittee of the American academy of neurology[J]. Neurology, 2006, 67(2): 203-210. DOI:10.1212/01.wnl.0000227183.21314.cd |
[18] | Wang CH, Wu CY, Liu CC, et al. Neuroprognostic accuracy of quantitative versus standard pupillary light reflex for adult postcardiac arrest patients: a systematic review and meta-analysis[J]. Crit Care Med, 2021, 49(10): 1790-1799. DOI:10.1097/CCM.0000000000005045 |
[19] | Riker RR, Sawyer ME, Fischman VG, et al. Neurological pupil index and pupillary light reflex by pupillometry predict outcome early after cardiac arrest[J]. Neurocrit Care, 2020, 32(1): 152-161. DOI:10.1007/s12028-019-00717-4 |
[20] | Golan E, Barrett K, Alali AS, et al. Predicting neurologic outcome after targeted temperature management for cardiac arrest: systematic review and meta-analysis[J]. Crit Care Med, 2014, 42(8): 1919-1930. DOI:10.1097/CCM.0000000000000335 |
[21] | Samaniego EA, Mlynash M, Caulfield AF, et al. Sedation confounds outcome prediction in cardiac arrest survivors treated with hypothermia[J]. Neurocrit Care, 2011, 15(1): 113-119. DOI:10.1007/s12028-010-9412-8 |
[22] | Rittenberger JC, Sangl J, Wheeler M, et al. Association between clinical examination and outcome after cardiac arrest[J]. Resuscitation, 2010, 81(9): 1128-1132. DOI:10.1016/j.resuscitation.2010.05.011 |
[23] | Lybeck A, Friberg H, Aneman A, et al. Prognostic significance of clinical seizures after cardiac arrest and target temperature management[J]. Resuscitation, 2017, 114: 146-151. DOI:10.1016/j.resuscitation.2017.01.017 |
[24] | Sandroni C, D'Arrigo S, Nolan JP. Prognostication after cardiac arrest[J]. Crit Care, 2018, 22(1): 150. DOI:10.1186/s13054-018-2060-7 |
[25] | Sanganalmath SK, Gopal P, Parker JR, et al. Global cerebral ischemia due to circulatory arrest: insights into cellular pathophysiology and diagnostic modalities[J]. Mol Cell Biochem, 2017, 426(1/2): 111-127. DOI:10.1007/s11010-016-2885-9 |
[26] | Jayson Esdaille C, Coppler PJ, Faro JW, et al. Duration and clinical features of cardiac arrest predict early severe cerebral edema[J]. Resuscitation, 2020, 153: 111-118. DOI:10.1016/j.resuscitation.2020.05.049 |
[27] | Zhou FT, Wang HX, Jian MY, et al. Gray-white matter ratio at the level of the basal Ganglia as a predictor of neurologic outcomes in cardiac arrest survivors: a literature review[J]. Front Med (Lausanne), 2022, 9: 847089. DOI:10.3389/fmed.2022.847089 |
[28] | Inamasu J, Miyatake S, Nakatsukasa M, et al. Loss of gray-white matter discrimination as an early CT sign of brain ischemia/hypoxia in victims of asphyxial cardiac arrest[J]. Emerg Radiol, 2011, 18(4): 295-298. DOI:10.1007/s10140-011-0954-7 |
[29] | Hong JY, Lee DH, Oh JH, et al. Grey-white matter ratio measured using early unenhanced brain computed tomography shows no correlation with neurological outcomes in patients undergoing targeted temperature management after cardiac arrest[J]. Resuscitation, 2019, 140: 161-169. DOI:10.1016/j.resuscitation.2019.03.039 |
[30] | Lee YH, Oh YT, Ahn HC, et al. The prognostic value of the grey-to-white matter ratio in cardiac arrest patients treated with extracorporeal membrane oxygenation[J]. Resuscitation, 2016, 99: 50-55. DOI:10.1016/j.resuscitation.2015.11.009 |
[31] | Hwan Kim Y, Lee JH, Hong CK, et al. Feasibility of optic nerve sheath diameter measured on initial brain computed tomography as an early neurologic outcome predictor after cardiac arrest[J]. Acad Emerg Med, 2014, 21(10): 1121-1128. DOI:10.1111/acem.12477 |
[32] | Lee BK, Jeung KW, Song KH, et al. Prognostic values of gray matter to white matter ratios on early brain computed tomography in adult comatose patients after out-of-hospital cardiac arrest of cardiac etiology[J]. Resuscitation, 2015, 96: 46-52. DOI:10.1016/j.resuscitation.2015.07.027 |
[33] | Streitberger KJ, Endisch C, Ploner CJ, et al. Timing of brain computed tomography and accuracy of outcome prediction after cardiac arrest[J]. Resuscitation, 2019, 145: 8-14. DOI:10.1016/j.resuscitation.2019.09.025 |
[34] | Gentsch A, Storm C, Leithner C, et al. Outcome prediction in patients after cardiac arrest: a simplified method for determination of gray-white matter ratio in cranial computed tomography[J]. Clin Neuroradiol, 2015, 25(1): 49-54. DOI:10.1007/s00062-013-0281-3 |
[35] | Na MK, Kim W, Lim TH, et al. Gray matter to white matter ratio for predicting neurological outcomes in patients treated with target temperature management after cardiac arrest: a systematic review and meta-analysis[J]. Resuscitation, 2018, 132: 21-28. DOI:10.1016/j.resuscitation.2018.08.024 |
[36] | Fan LZ, Li H, Zhuo JJ, et al. The human brainnetome atlas: a new brain atlas based on connectional architecture[J]. Cereb Cortex, 2016, 26(8): 3508-3526. DOI:10.1093/cercor/bhw157 |
[37] | Hanning U, Sporns PB, Lebiedz P, et al. Automated assessment of early hypoxic brain edema in non-enhanced CT predicts outcome in patients after cardiac arrest[J]. Resuscitation, 2016, 104: 91-94. DOI:10.1016/j.resuscitation.2016.03.018 |
[38] | Järnum H, Knutsson L, Rundgren M, et al. Diffusion and perfusion MRI of the brain in comatose patients treated with mild hypothermia after cardiac arrest: a prospective observational study[J]. Resuscitation, 2009, 80(4): 425-430. DOI:10.1016/j.resuscitation.2009.01.004 |
[39] | Arbelaez A, Castillo M, Mukherji SK. Diffusion-weighted MR imaging of global cerebral Anoxia[J]. AJNR Am J Neuroradiol, 1999, 20(6): 999-1007. |
[40] | Kim J, Kim K, Hong S, et al. Low apparent diffusion coefficient cluster-based analysis of diffusion-weighted MRI for prognostication of out-of-hospital cardiac arrest survivors[J]. Resuscitation, 2013, 84(10): 1393-1399. DOI:10.1016/j.resuscitation.2013.04.011 |
[41] | Hirsch KG, Fischbein N, Mlynash M, et al. Prognostic value of diffusion-weighted MRI for post-cardiac arrest Coma[J]. Neurology, 2020, 94(16): e1684-e1692. DOI:10.1212/WNL.0000000000009289 |
[42] | Kim J, Choi BS, Kim K, et al. Prognostic performance of diffusion-weighted MRI combined with NSE in comatose cardiac arrest survivors treated with mild hypothermia[J]. Neurocrit Care, 2012, 17(3): 412-420. DOI:10.1007/s12028-012-9773-2 |
[43] | Hirsch KG, Mlynash M, Jansen S, et al. Prognostic value of a qualitative brain MRI scoring system after cardiac arrest[J]. J Neuroimaging, 2015, 25(3): 430-437. DOI:10.1111/jon.12143 |
[44] | Benghanem S, Pruvost-Robieux E, Bouchereau E, et al. Prognostication after cardiac arrest: how EEG and evoked potentials may improve the challenge[J]. Ann Intensive Care, 2022, 12(1): 111. DOI:10.1186/s13613-022-01083-9 |
[45] | Fenter H, Ben-Hamouda N, Novy J, et al. Benign EEG for prognostication of favorable outcome after cardiac arrest: a reappraisal[J]. Resuscitation, 2023, 182: 109637. DOI:10.1016/j.resuscitation.2022.11.003 |
[46] | 心肺复苏后昏迷患者早期神经功能预后评估专家共识组. 心肺复苏后昏迷患者早期神经功能预后评估专家共识[J]. 中华急诊医学杂志, 2019, 28(2): 156-162. DOI:10.3760/cma.j.issn.1671-0282.2019.02.006 |
[47] | Sethi NK, Westhall E, Rossetti AO, et al. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest[J]. Neurology, 2016, 87(15): 1631. DOI:10.1212/WNL.0000000000003276 |
[48] | Bongiovanni F, Romagnosi F, Barbella G, et al. Standardized EEG analysis to reduce the uncertainty of outcome prognostication after cardiac arrest[J]. Intensive Care Med, 2020, 46(5): 963-972. DOI:10.1007/s00134-019-05921-6 |
[49] | Oh SH, Park KN, Shon YM, et al. Continuous amplitude-integrated electroencephalographic monitoring is a useful prognostic tool for hypothermia-treated cardiac arrest patients[J]. Circulation, 2015, 132(12): 1094-1103. DOI:10.1161/CIRCULATIONAHA.115.015754 |
[50] | Tjepkema-Cloostermans MC, Hofmeijer J, Beishuizen A, et al. Cerebral recovery index: reliable help for prediction of neurologic outcome after cardiac arrest[J]. Crit Care Med, 2017, 45(8): e789-e797. DOI:10.1097/CCM.0000000000002412 |
[51] | Oh SH, Park KN, Choi SP, et al. Prognostic value of somatosensory evoked potential in cardiac arrest patients without withdrawal of life-sustaining therapy[J]. Resuscitation, 2020, 150: 154-161. DOI:10.1016/j.resuscitation.2020.02.029 |
[52] | Rossetti AO, Oddo M, Logroscino G, et al. Prognostication after cardiac arrest and hypothermia: a prospective study[J]. Ann Neurol, 2010, 67(3): 301-307. DOI:10.1002/ana.21984 |
[53] | Endisch C, Storm C, Ploner CJ, et al. Amplitudes of SSEP and outcome in cardiac arrest survivors: a prospective cohort study[J]. Neurology, 2015, 85(20): 1752-1760. DOI:10.1212/WNL.0000000000002123 |
[54] | Bouwes A, Binnekade JM, Kuiper MA, et al. Prognosis of Coma after therapeutic hypothermia: a prospective cohort study[J]. Ann Neurol, 2012, 71(2): 206-212. DOI:10.1002/ana.22632 |
[55] | Humaloja J, Ashton NJ, Skrifvars MB. Brain injury biomarkers for predicting outcome after cardiac arrest[J]. Crit Care, 2022, 26(1): 81. DOI:10.1186/s13054-022-03913-5 |
[56] | Hoiland RL, Rikhraj KJK, Thiara S, et al. Neurologic prognostication after cardiac arrest using brain biomarkers: a systematic review and meta-analysis[J]. JAMA Neurol, 2022, 79(4): 390-398. DOI:10.1001/jamaneurol.2021.5598 |
[57] | Arctaedius I, Levin H, Thorgeirsdóttir B, et al. Plasma glial fibrillary acidic protein and tau: predictors of neurological outcome after cardiac arrest[J]. Critical Care, 2024, 28(1): 116. DOI:10.1186/s13054-024-04889-0 |
[58] | Sandroni C, Skrifvars MB, Taccone FS. Brain monitoring after cardiac arrest[J]. Curr Opin Crit Care, 2023, 29(2): 68-74. DOI:10.1097/MCC.0000000000001023 |
[59] | Sandroni C, D'Arrigo S, Cacciola S, et al. Prediction of good neurological outcome in comatose survivors of cardiac arrest: a systematic review[J]. Intensive Care Med, 2022, 48(4): 389-413. DOI:10.1007/s00134-022-06618-z |
[60] | Agoston DV, Shutes-David A, Peskind ER. Biofluid biomarkers of traumatic brain injury[J]. Brain Inj, 2017, 31(9): 1195-1203. DOI:10.1080/02699052.2017.1357836 |
[61] | Wihersaari L, Tiainen M, Skrifvars MB, et al. Usefulness of neuron specific enolase in prognostication after cardiac arrest: Impact of age and time to ROSC[J]. Resuscitation, 2019, 139: 214-221. DOI:10.1016/j.resuscitation.2019.04.021 |
[62] | Luescher T, Mueller J, Isenschmid C, et al. Neuron-specific enolase (NSE) improves clinical risk scores for prediction of neurological outcome and death in cardiac arrest patients: Results from a prospective trial[J]. Resuscitation, 2019, 142: 50-60. DOI:10.1016/j.resuscitation.2019.07.003 |
[63] | Vondrakova D, Kruger A, Janotka M, et al. Association of neuron-specific enolase values with outcomes in cardiac arrest survivors is dependent on the time of sample collection[J]. Crit Care, 2017, 21(1): 172. DOI:10.1186/s13054-017-1766-2 |
[64] | Tziakouri A, Novy J, Ben-Hamouda N, et al. Relationship between serum neuron-specific enolase and EEG after cardiac arrest: a reappraisal[J]. Clin Neurophysiol, 2023, 151: 100-106. DOI:10.1016/j.clinph.2023.05.001 |
[65] | Duez CHV, Grejs AM, Jeppesen AN, et al. Neuron-specific enolase and S-100b in prolonged targeted temperature management after cardiac arrest: a randomised study[J]. Resuscitation, 2018, 122: 79-86. DOI:10.1016/j.resuscitation.2017.11.052 |
[66] | Akin M, Garcheva V, Sieweke JT, et al. Neuromarkers and neurological outcome in out-of-hospital cardiac arrest patients treated with therapeutic hypothermia-experience from the HAnnover COoling REgistry (HACORE)[J]. PLoS One, 2021, 16(1): e0245210. DOI:10.1371/journal.pone.0245210 |
[67] | Klitholm M, Jeppesen AN, Christensen S, et al. Neurofilament Light Chain and Glial Fibrillary Acidic Protein as early prognostic biomarkers after out-of-hospital cardiac arrest[J]. Resuscitation, 2023, 193: 109983. DOI:10.1016/j.resuscitation.2023.109983 |
[68] | Gilje P, Gidlöf O, Rundgren M, et al. The brain-enriched microRNA miR-124 in plasma predicts neurological outcome after cardiac arrest[J]. Crit Care, 2014, 18(2): R40. DOI:10.1186/cc13753 |
[69] | Wander PL, Enquobahrie DA, Pritchard CC, et al. Circulating microRNAs and sudden cardiac arrest outcomes[J]. Resuscitation, 2016, 106: 96-101. DOI:10.1016/j.resuscitation.2016.06.038 |
[70] | Salgado-Somoza A, Stefanizzi FM, Stammet P, et al. Non-coding RNAs to aid in neurological prognosis after cardiac arrest[J]. Noncoding RNA, 2018, 4(4): 42. DOI:10.3390/ncrna4040042 |
[71] | Beske RP, Bache S, Abild Stengaard Meyer M, et al. microRNA-9-3p: a novel predictor of neurological outcome after cardiac arrest[J]. Eur Heart J Acute Cardiovasc Care, 2022, 11(8): 609-616. DOI:10.1093/ehjacc/zuac066 |
[72] | Devaux Y, Dankiewicz J, Salgado-Somoza A, et al. Association of circulating microRNA-124-3p levels with outcomes after out-of-hospital cardiac arrest: a substudy of a randomized clinical trial[J]. JAMA Cardiol, 2016, 1(3): 305-313. DOI:10.1001/jamacardio.2016.0480 |
[73] | Tsetsou S, Novy J, Pfeiffer C, et al. Multimodal outcome prognostication after cardiac arrest and targeted temperature management: analysis at 36 ℃[J]. Neurocrit Care, 2018, 28(1): 104-109. DOI:10.1007/s12028-017-0393-8 |
[74] | Scholefield B R, Tijssen J, Ganesan S L, et al. Prediction of good neurological outcome after return of circulation following paediatric cardiac arrest: a systematic review and meta-analysis[J]. Resuscitation, 2024: 110483. DOI:10.1016/j.resuscitation.2024.110483 |
[75] | Lee BK, Jeung KW, Lee HY, et al. Combining brain computed tomography and serum neuron specific enolase improves the prognostic performance compared to either alone in comatose cardiac arrest survivors treated with therapeutic hypothermia[J]. Resuscitation, 2013, 84(10): 1387-1392. DOI:10.1016/j.resuscitation.2013.05.026 |
[76] | Bevers MB, Scirica BM, Avery KR, et al. Combination of clinical exam, MRI and EEG to predict outcome following cardiac arrest and targeted temperature management[J]. Neurocrit Care, 2018, 29(3): 396-403. DOI:10.1007/s12028-018-0559-z |
[77] | Wu O, Batista LM, Lima FO, et al. Predicting clinical outcome in comatose cardiac arrest patients using early noncontrast computed tomography[J]. Stroke, 2011, 42(4): 985-992. DOI:10.1161/STROKEAHA.110.594879 |
[78] | Arctaedius I, Levin H, Larsson M, et al. 2021 European resuscitation council/European society of intensive care medicine algorithm for prognostication of poor neurological outcome after cardiac arrest-can entry criteria be broadened?[J]. Crit Care Med, 2024, 52(4): 531-541. DOI:10.1097/CCM.0000000000006113 |
[79] | Cronberg T. Assessing brain injury after cardiac arrest, towards a quantitative approach[J]. Curr Opin Crit Care, 2019, 25(3): 211-217. DOI:10.1097/MCC.0000000000000611 |